import torch import math import numpy as np def lerp_np(x,y,w): fin_out = (y-x)*w + x return fin_out def generate_fractal_noise_2d(shape, res, octaves=1, persistence=0.5): noise = np.zeros(shape) frequency = 1 amplitude = 1 for _ in range(octaves): noise += amplitude * generate_perlin_noise_2d(shape, (frequency*res[0], frequency*res[1])) frequency *= 2 amplitude *= persistence return noise def generate_perlin_noise_2d(shape, res): def f(t): return 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3 delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = np.mgrid[0:res[0]:delta[0], 0:res[1]:delta[1]].transpose(1, 2, 0) % 1 # Gradients angles = 2 * np.pi * np.random.rand(res[0] + 1, res[1] + 1) gradients = np.dstack((np.cos(angles), np.sin(angles))) g00 = gradients[0:-1, 0:-1].repeat(d[0], 0).repeat(d[1], 1) g10 = gradients[1:, 0:-1].repeat(d[0], 0).repeat(d[1], 1) g01 = gradients[0:-1, 1:].repeat(d[0], 0).repeat(d[1], 1) g11 = gradients[1:, 1:].repeat(d[0], 0).repeat(d[1], 1) # Ramps n00 = np.sum(grid * g00, 2) n10 = np.sum(np.dstack((grid[:, :, 0] - 1, grid[:, :, 1])) * g10, 2) n01 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1] - 1)) * g01, 2) n11 = np.sum(np.dstack((grid[:, :, 0] - 1, grid[:, :, 1] - 1)) * g11, 2) # Interpolation t = f(grid) n0 = n00 * (1 - t[:, :, 0]) + t[:, :, 0] * n10 n1 = n01 * (1 - t[:, :, 0]) + t[:, :, 0] * n11 return np.sqrt(2) * ((1 - t[:, :, 1]) * n0 + t[:, :, 1] * n1) def rand_perlin_2d_np(shape, res, fade=lambda t: 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = np.mgrid[0:res[0]:delta[0], 0:res[1]:delta[1]].transpose(1, 2, 0) % 1 angles = 2 * math.pi * np.random.rand(res[0] + 1, res[1] + 1) gradients = np.stack((np.cos(angles), np.sin(angles)), axis=-1) tt = np.repeat(np.repeat(gradients,d[0],axis=0),d[1],axis=1) tile_grads = lambda slice1, slice2: np.repeat(np.repeat(gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]],d[0],axis=0),d[1],axis=1) dot = lambda grad, shift: ( np.stack((grid[:shape[0], :shape[1], 0] + shift[0], grid[:shape[0], :shape[1], 1] + shift[1]), axis=-1) * grad[:shape[0], :shape[1]]).sum(axis=-1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]) n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]) t = fade(grid[:shape[0], :shape[1]]) return math.sqrt(2) * lerp_np(lerp_np(n00, n10, t[..., 0]), lerp_np(n01, n11, t[..., 0]), t[..., 1]) def rand_perlin_2d(shape, res, fade=lambda t: 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])), dim=-1) % 1 angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1) gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1) tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave( d[1], 1) dot = lambda grad, shift: ( torch.stack((grid[:shape[0], :shape[1], 0] + shift[0], grid[:shape[0], :shape[1], 1] + shift[1]), dim=-1) * grad[:shape[0], :shape[1]]).sum(dim=-1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]) n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]) t = fade(grid[:shape[0], :shape[1]]) return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]) def rand_perlin_2d_octaves(shape, res, octaves=1, persistence=0.5): noise = torch.zeros(shape) frequency = 1 amplitude = 1 for _ in range(octaves): noise += amplitude * rand_perlin_2d(shape, (frequency * res[0], frequency * res[1])) frequency *= 2 amplitude *= persistence return noise