Siddartha10 commited on
Commit
8f10808
·
verified ·
1 Parent(s): 1ae648d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -53
app.py CHANGED
@@ -1,64 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("large-traversaal/Phi-4-Hindi")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
+ # Load model and tokenizer
5
+ MODEL_NAME = "large-traversaal/Phi-4-Hindi"
6
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
8
 
9
+ def chatbot_response(user_input, chat_history=[]):
10
+ """Generates a response from the chatbot model."""
11
+ # Tokenize input and add chat history
12
+ input_ids = tokenizer.encode(user_input, return_tensors="pt")
13
 
14
+ # Generate response
15
+ output = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
16
+ response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
 
 
 
 
 
 
17
 
18
+ # Update chat history
19
+ chat_history.append((user_input, response))
20
+ return chat_history, "\n".join([f"You: {msg}\nBot: {res}" for msg, res in chat_history])
 
 
21
 
22
+ # Gradio Interface
23
+ with gr.Blocks() as chatbot_ui:
24
+ gr.Markdown("## Chatbot Interface")
25
 
26
+ chat_history = gr.State([]) # Stores the chat history
27
 
28
+ with gr.Row():
29
+ user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")
30
+ submit_button = gr.Button("Send")
 
 
 
 
 
31
 
32
+ with gr.Row():
33
+ chat_display = gr.Textbox(label="Chat History", lines=20, interactive=False)
34
 
35
+ # Event listener
36
+ submit_button.click(chatbot_response, inputs=[user_input, chat_history], outputs=[chat_history, chat_display])
37
 
38
+ chatbot_ui.launch()