Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,77 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
import torch
|
4 |
import gdown
|
5 |
import os
|
6 |
|
7 |
# Set the title of the Streamlit app
|
8 |
-
st.title("Text
|
9 |
|
10 |
# Function to download the model from Google Drive
|
11 |
def download_model_from_drive(file_id, dest_path):
|
12 |
url = f'https://drive.google.com/uc?id={file_id}'
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Download the model files
|
16 |
with st.spinner("Downloading model..."):
|
17 |
-
download_model_from_drive('
|
18 |
-
download_model_from_drive('
|
19 |
-
download_model_from_drive('
|
20 |
-
download_model_from_drive('
|
21 |
-
download_model_from_drive('
|
22 |
|
23 |
# Load the model and tokenizer
|
24 |
@st.cache(allow_output_mutation=True)
|
25 |
def load_model_and_tokenizer():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
tokenizer, model = load_model_and_tokenizer()
|
32 |
|
33 |
# Input text from user
|
34 |
-
input_text = st.text_area("Enter the text to
|
35 |
|
36 |
-
if st.button("
|
37 |
if input_text:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
else:
|
50 |
-
st.write("Please enter some text to
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
import gdown
|
5 |
import os
|
6 |
|
7 |
# Set the title of the Streamlit app
|
8 |
+
st.title("Text Summarization with Fine-Tuned BART")
|
9 |
|
10 |
# Function to download the model from Google Drive
|
11 |
def download_model_from_drive(file_id, dest_path):
|
12 |
url = f'https://drive.google.com/uc?id={file_id}'
|
13 |
+
try:
|
14 |
+
gdown.download(url, dest_path, quiet=False)
|
15 |
+
st.success(f"Downloaded {dest_path}")
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error downloading {dest_path}: {e}")
|
18 |
+
|
19 |
+
# Ensure the model directory exists
|
20 |
+
model_dir = 'model'
|
21 |
+
if not os.path.exists(model_dir):
|
22 |
+
os.makedirs(model_dir)
|
23 |
+
|
24 |
+
# File IDs for your model components
|
25 |
+
file_ids = {
|
26 |
+
'model': '1-V2bEtPR9Y3iBXK9zOR-qM5y9hKiQUnF',
|
27 |
+
'config': '1-T2etSP_k_3j5LzunWq8viKGQCQ5RMr_',
|
28 |
+
'tokenizer': '1-cRYNPWqlNNGRxeztympRRfVuy3hWuMY',
|
29 |
+
'vocab': '1-t9AhomeH7YIIpAqCGTok8wjvl0tml0F',
|
30 |
+
'merges': '1-l77_KEdK7GBFjMX_6UXGE-ZTGDraaDm'
|
31 |
+
}
|
32 |
|
33 |
# Download the model files
|
34 |
with st.spinner("Downloading model..."):
|
35 |
+
download_model_from_drive(file_ids['model'], os.path.join(model_dir, 'pytorch_model.bin'))
|
36 |
+
download_model_from_drive(file_ids['config'], os.path.join(model_dir, 'config.json'))
|
37 |
+
download_model_from_drive(file_ids['tokenizer'], os.path.join(model_dir, 'tokenizer.json'))
|
38 |
+
download_model_from_drive(file_ids['vocab'], os.path.join(model_dir, 'vocab.json'))
|
39 |
+
download_model_from_drive(file_ids['merges'], os.path.join(model_dir, 'merges.txt'))
|
40 |
|
41 |
# Load the model and tokenizer
|
42 |
@st.cache(allow_output_mutation=True)
|
43 |
def load_model_and_tokenizer():
|
44 |
+
try:
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
46 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
|
47 |
+
return tokenizer, model
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"Error loading model or tokenizer: {e}")
|
50 |
+
return None, None
|
51 |
|
52 |
tokenizer, model = load_model_and_tokenizer()
|
53 |
|
54 |
# Input text from user
|
55 |
+
input_text = st.text_area("Enter the text to summarize:")
|
56 |
|
57 |
+
if st.button("Summarize"):
|
58 |
if input_text:
|
59 |
+
if tokenizer and model:
|
60 |
+
try:
|
61 |
+
# Tokenize the input text
|
62 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
63 |
+
|
64 |
+
# Perform summarization
|
65 |
+
with torch.no_grad():
|
66 |
+
summary_ids = model.generate(inputs['input_ids'], max_length=150, num_beams=4, early_stopping=True)
|
67 |
+
|
68 |
+
# Decode the summary
|
69 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
70 |
+
|
71 |
+
st.write(f"Summary: {summary}")
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"Error during summarization: {e}")
|
74 |
+
else:
|
75 |
+
st.error("Model or tokenizer not loaded.")
|
76 |
else:
|
77 |
+
st.write("Please enter some text to summarize.")
|