Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,36 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Set the path to your Google Drive folder
|
6 |
+
model_path = '/content/drive/My Drive/bart_samsum'
|
7 |
+
|
8 |
+
# Check if the model path exists
|
9 |
+
if not os.path.exists(model_path):
|
10 |
+
st.error(f"The path {model_path} does not exist. Please check the path.")
|
11 |
+
else:
|
12 |
+
# Load the tokenizer and model from Google Drive
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
15 |
+
|
16 |
+
# Streamlit app UI
|
17 |
+
st.title("BART Summarization Model")
|
18 |
+
|
19 |
+
input_text = st.text_area("Input Text", "Enter text here...")
|
20 |
+
|
21 |
+
if st.button("Generate Summary"):
|
22 |
+
if not input_text.strip():
|
23 |
+
st.warning("Please enter some text to summarize.")
|
24 |
+
else:
|
25 |
+
# Tokenize and generate summary
|
26 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
27 |
+
summary_ids = model.generate(inputs["input_ids"], max_length=150, num_beams=4, early_stopping=True)
|
28 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
29 |
+
|
30 |
+
# Display the summary
|
31 |
+
st.subheader("Generated Summary")
|
32 |
+
st.write(summary)
|
33 |
+
|
34 |
+
# Optionally, you can add a section to display model information or statistics
|
35 |
+
st.sidebar.title("Model Information")
|
36 |
+
st.sidebar.write("This app uses a fine-tuned BART model for summarization.")
|