Shuja007 commited on
Commit
6e55b8d
·
verified ·
1 Parent(s): 4400dcf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ import torch
4
+ import nltk
5
+
6
+ # Download punkt for sentence tokenization
7
+ nltk.download('punkt')
8
+
9
+ # Load tokenizer and model from the Hugging Face Hub
10
+ tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/your-model-repo-name")
11
+ model = AutoModelForSeq2SeqLM.from_pretrained("your-huggingface-username/your-model-repo-name")
12
+
13
+ st.title("Dialogue Summarization with BART")
14
+
15
+ # Input dialogue
16
+ dialogue = st.text_area("Enter dialogue:", height=200)
17
+
18
+ if st.button("Summarize"):
19
+ # Tokenize input
20
+ inputs = tokenizer(dialogue, max_length=512, truncation=True, return_tensors="pt")
21
+
22
+ # Generate summary
23
+ summary_ids = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
24
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
25
+
26
+ # Display summary
27
+ st.subheader("Summary:")
28
+ st.write(summary)
29
+
30
+ st.markdown("---")
31
+ st.markdown("This app uses a fine-tuned BART model to summarize dialogues. The model was trained on the SAMSum dataset.")