Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import torch
|
4 |
+
import nltk
|
5 |
+
|
6 |
+
# Download punkt for sentence tokenization
|
7 |
+
nltk.download('punkt')
|
8 |
+
|
9 |
+
# Load tokenizer and model from the Hugging Face Hub
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/your-model-repo-name")
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("your-huggingface-username/your-model-repo-name")
|
12 |
+
|
13 |
+
st.title("Dialogue Summarization with BART")
|
14 |
+
|
15 |
+
# Input dialogue
|
16 |
+
dialogue = st.text_area("Enter dialogue:", height=200)
|
17 |
+
|
18 |
+
if st.button("Summarize"):
|
19 |
+
# Tokenize input
|
20 |
+
inputs = tokenizer(dialogue, max_length=512, truncation=True, return_tensors="pt")
|
21 |
+
|
22 |
+
# Generate summary
|
23 |
+
summary_ids = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
|
24 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Display summary
|
27 |
+
st.subheader("Summary:")
|
28 |
+
st.write(summary)
|
29 |
+
|
30 |
+
st.markdown("---")
|
31 |
+
st.markdown("This app uses a fine-tuned BART model to summarize dialogues. The model was trained on the SAMSum dataset.")
|