Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import gdown | |
import os | |
# Set the title of the Streamlit app | |
st.title("Text Classification with Hugging Face Transformers") | |
# Function to download the model from Google Drive | |
def download_model_from_drive(file_id, dest_path): | |
url = f'https://drive.google.com/uc?id={file_id}' | |
gdown.download(url, dest_path, quiet=False) | |
# Download the model files | |
with st.spinner("Downloading model..."): | |
download_model_from_drive('1-V2bEtPR9Y3iBXK9zOR-qM5y9hKiQUnF', 'model/model.safetensors') | |
download_model_from_drive('1-T2etSP_k_3j5LzunWq8viKGQCQ5RMr_', 'model/config.json') | |
download_model_from_drive('1-cRYNPWqlNNGRxeztympRRfVuy3hWuMY', 'model/tokenizer.json') | |
download_model_from_drive('1-t9AhomeH7YIIpAqCGTok8wjvl0tml0F', 'model/vocab.json') | |
download_model_from_drive('1-l77_KEdK7GBFjMX_6UXGE-ZTGDraaDm', 'model/merges.txt') | |
# Load the model and tokenizer | |
def load_model_and_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained('model') | |
# For Safetensors, you might need a custom loading mechanism | |
model = AutoModelForSequenceClassification.from_pretrained('model', use_safetensors=True) # Adjust if necessary | |
return tokenizer, model | |
tokenizer, model = load_model_and_tokenizer() | |
# Input text from user | |
input_text = st.text_area("Enter the text to classify:") | |
if st.button("Classify"): | |
if input_text: | |
# Tokenize the input text | |
inputs = tokenizer(input_text, return_tensors="pt") | |
# Perform classification | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get the predicted class | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
st.write(f"Predicted Class: {predicted_class}") | |
else: | |
st.write("Please enter some text to classify.") | |