from dotenv import load_dotenv import sys import os import uuid sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from multi_agents.agents import ChiefEditorAgent import asyncio import json from gpt_researcher.utils.enum import Tone # Run with LangSmith if API key is set if os.environ.get("LANGCHAIN_API_KEY"): os.environ["LANGCHAIN_TRACING_V2"] = "true" load_dotenv() def open_task(): # Get the directory of the current script current_dir = os.path.dirname(os.path.abspath(__file__)) # Construct the absolute path to task.json task_json_path = os.path.join(current_dir, 'task.json') with open(task_json_path, 'r') as f: task = json.load(f) if not task: raise Exception("No task found. Please ensure a valid task.json file is present in the multi_agents directory and contains the necessary task information.") return task async def run_research_task(query, websocket=None, stream_output=None, tone=Tone.Objective, headers=None): task = open_task() task["query"] = query chief_editor = ChiefEditorAgent(task, websocket, stream_output, tone, headers) research_report = await chief_editor.run_research_task() if websocket and stream_output: await stream_output("logs", "research_report", research_report, websocket) return research_report async def main(): task = open_task() chief_editor = ChiefEditorAgent(task) research_report = await chief_editor.run_research_task(task_id=uuid.uuid4()) return research_report if __name__ == "__main__": asyncio.run(main())