Spaces:
Running
Running
Update backend/server/server_utils.py
Browse files- backend/server/server_utils.py +259 -259
backend/server/server_utils.py
CHANGED
@@ -1,259 +1,259 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
import time
|
5 |
-
import shutil
|
6 |
-
from typing import Dict, List, Any
|
7 |
-
from fastapi.responses import JSONResponse, FileResponse
|
8 |
-
from gpt_researcher.document.document import DocumentLoader
|
9 |
-
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
|
10 |
-
from pathlib import Path
|
11 |
-
from datetime import datetime
|
12 |
-
from fastapi import HTTPException
|
13 |
-
import logging
|
14 |
-
|
15 |
-
logging.basicConfig(level=logging.DEBUG)
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
class CustomLogsHandler:
|
19 |
-
"""Custom handler to capture streaming logs from the research process"""
|
20 |
-
def __init__(self, websocket, task: str):
|
21 |
-
self.logs = []
|
22 |
-
self.websocket = websocket
|
23 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
24 |
-
self.log_file = os.path.join("outputs", f"{sanitized_filename}.json")
|
25 |
-
self.timestamp = datetime.now().isoformat()
|
26 |
-
# Initialize log file with metadata
|
27 |
-
os.makedirs("outputs", exist_ok=True)
|
28 |
-
with open(self.log_file, 'w') as f:
|
29 |
-
json.dump({
|
30 |
-
"timestamp": self.timestamp,
|
31 |
-
"events": [],
|
32 |
-
"content": {
|
33 |
-
"query": "",
|
34 |
-
"sources": [],
|
35 |
-
"context": [],
|
36 |
-
"report": "",
|
37 |
-
"costs": 0.0
|
38 |
-
}
|
39 |
-
}, f, indent=2)
|
40 |
-
|
41 |
-
async def send_json(self, data: Dict[str, Any]) -> None:
|
42 |
-
"""Store log data and send to websocket"""
|
43 |
-
# Send to websocket for real-time display
|
44 |
-
if self.websocket:
|
45 |
-
await self.websocket.send_json(data)
|
46 |
-
|
47 |
-
# Read current log file
|
48 |
-
with open(self.log_file, 'r') as f:
|
49 |
-
log_data = json.load(f)
|
50 |
-
|
51 |
-
# Update appropriate section based on data type
|
52 |
-
if data.get('type') == 'logs':
|
53 |
-
log_data['events'].append({
|
54 |
-
"timestamp": datetime.now().isoformat(),
|
55 |
-
"type": "event",
|
56 |
-
"data": data
|
57 |
-
})
|
58 |
-
else:
|
59 |
-
# Update content section for other types of data
|
60 |
-
log_data['content'].update(data)
|
61 |
-
|
62 |
-
# Save updated log file
|
63 |
-
with open(self.log_file, 'w') as f:
|
64 |
-
json.dump(log_data, f, indent=2)
|
65 |
-
logger.debug(f"Log entry written to: {self.log_file}")
|
66 |
-
|
67 |
-
|
68 |
-
class Researcher:
|
69 |
-
def __init__(self, query: str, report_type: str = "research_report"):
|
70 |
-
self.query = query
|
71 |
-
self.report_type = report_type
|
72 |
-
# Generate unique ID for this research task
|
73 |
-
self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
|
74 |
-
# Initialize logs handler with research ID
|
75 |
-
self.logs_handler = CustomLogsHandler(self.research_id)
|
76 |
-
self.researcher = GPTResearcher(
|
77 |
-
query=query,
|
78 |
-
report_type=report_type,
|
79 |
-
websocket=self.logs_handler
|
80 |
-
)
|
81 |
-
|
82 |
-
async def research(self) -> dict:
|
83 |
-
"""Conduct research and return paths to generated files"""
|
84 |
-
await self.researcher.conduct_research()
|
85 |
-
report = await self.researcher.write_report()
|
86 |
-
|
87 |
-
# Generate the files
|
88 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
|
89 |
-
file_paths = await generate_report_files(report, sanitized_filename)
|
90 |
-
|
91 |
-
# Get the JSON log path that was created by CustomLogsHandler
|
92 |
-
json_relative_path = os.path.relpath(self.logs_handler.log_file)
|
93 |
-
|
94 |
-
return {
|
95 |
-
"output": {
|
96 |
-
**file_paths, # Include PDF, DOCX, and MD paths
|
97 |
-
"json": json_relative_path
|
98 |
-
}
|
99 |
-
}
|
100 |
-
|
101 |
-
def sanitize_filename(filename: str) -> str:
|
102 |
-
# Split into components
|
103 |
-
prefix, timestamp, *task_parts = filename.split('_')
|
104 |
-
task = '_'.join(task_parts)
|
105 |
-
|
106 |
-
# Calculate max length for task portion
|
107 |
-
# 255 - len("outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
|
108 |
-
max_task_length = 255 - 8 - 5 - 10 - 6 - 10 # ~216 chars for task
|
109 |
-
|
110 |
-
# Truncate task if needed
|
111 |
-
truncated_task = task[:max_task_length] if len(task) > max_task_length else task
|
112 |
-
|
113 |
-
# Reassemble and clean the filename
|
114 |
-
sanitized = f"{prefix}_{timestamp}_{truncated_task}"
|
115 |
-
return re.sub(r"[^\w\s-]", "", sanitized).strip()
|
116 |
-
|
117 |
-
|
118 |
-
async def handle_start_command(websocket, data: str, manager):
|
119 |
-
json_data = json.loads(data[6:])
|
120 |
-
task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
|
121 |
-
json_data)
|
122 |
-
|
123 |
-
if not task or not report_type:
|
124 |
-
print("Error: Missing task or report_type")
|
125 |
-
return
|
126 |
-
|
127 |
-
# Create logs handler with websocket and task
|
128 |
-
logs_handler = CustomLogsHandler(websocket, task)
|
129 |
-
# Initialize log content with query
|
130 |
-
await logs_handler.send_json({
|
131 |
-
"query": task,
|
132 |
-
"sources": [],
|
133 |
-
"context": [],
|
134 |
-
"report": ""
|
135 |
-
})
|
136 |
-
|
137 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
138 |
-
|
139 |
-
report = await manager.start_streaming(
|
140 |
-
task,
|
141 |
-
report_type,
|
142 |
-
report_source,
|
143 |
-
source_urls,
|
144 |
-
document_urls,
|
145 |
-
tone,
|
146 |
-
websocket,
|
147 |
-
headers
|
148 |
-
)
|
149 |
-
report = str(report)
|
150 |
-
file_paths = await generate_report_files(report, sanitized_filename)
|
151 |
-
# Add JSON log path to file_paths
|
152 |
-
file_paths["json"] = os.path.relpath(logs_handler.log_file)
|
153 |
-
await send_file_paths(websocket, file_paths)
|
154 |
-
|
155 |
-
|
156 |
-
async def handle_human_feedback(data: str):
|
157 |
-
feedback_data = json.loads(data[14:]) # Remove "human_feedback" prefix
|
158 |
-
print(f"Received human feedback: {feedback_data}")
|
159 |
-
# TODO: Add logic to forward the feedback to the appropriate agent or update the research state
|
160 |
-
|
161 |
-
async def handle_chat(websocket, data: str, manager):
|
162 |
-
json_data = json.loads(data[4:])
|
163 |
-
print(f"Received chat message: {json_data.get('message')}")
|
164 |
-
await manager.chat(json_data.get("message"), websocket)
|
165 |
-
|
166 |
-
async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
|
167 |
-
pdf_path = await write_md_to_pdf(report, filename)
|
168 |
-
docx_path = await write_md_to_word(report, filename)
|
169 |
-
md_path = await write_text_to_md(report, filename)
|
170 |
-
return {"pdf": pdf_path, "docx": docx_path, "md": md_path}
|
171 |
-
|
172 |
-
|
173 |
-
async def send_file_paths(websocket, file_paths: Dict[str, str]):
|
174 |
-
await websocket.send_json({"type": "path", "output": file_paths})
|
175 |
-
|
176 |
-
|
177 |
-
def get_config_dict(
|
178 |
-
langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
|
179 |
-
google_api_key: str, google_cx_key: str, bing_api_key: str,
|
180 |
-
searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
|
181 |
-
) -> Dict[str, str]:
|
182 |
-
return {
|
183 |
-
"LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
|
184 |
-
"OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
|
185 |
-
"TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
|
186 |
-
"GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
|
187 |
-
"GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
|
188 |
-
"BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
|
189 |
-
"SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
|
190 |
-
"SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
|
191 |
-
"SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
|
192 |
-
"SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
|
193 |
-
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
|
194 |
-
"DOC_PATH": os.getenv("DOC_PATH", "./my-docs"),
|
195 |
-
"RETRIEVER": os.getenv("RETRIEVER", ""),
|
196 |
-
"EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
|
197 |
-
}
|
198 |
-
|
199 |
-
|
200 |
-
def update_environment_variables(config: Dict[str, str]):
|
201 |
-
for key, value in config.items():
|
202 |
-
os.environ[key] = value
|
203 |
-
|
204 |
-
|
205 |
-
async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
|
206 |
-
file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
|
207 |
-
with open(file_path, "wb") as buffer:
|
208 |
-
shutil.copyfileobj(file.file, buffer)
|
209 |
-
print(f"File uploaded to {file_path}")
|
210 |
-
|
211 |
-
document_loader = DocumentLoader(DOC_PATH)
|
212 |
-
await document_loader.load()
|
213 |
-
|
214 |
-
return {"filename": file.filename, "path": file_path}
|
215 |
-
|
216 |
-
|
217 |
-
async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
|
218 |
-
file_path = os.path.join(DOC_PATH, os.path.basename(filename))
|
219 |
-
if os.path.exists(file_path):
|
220 |
-
os.remove(file_path)
|
221 |
-
print(f"File deleted: {file_path}")
|
222 |
-
return JSONResponse(content={"message": "File deleted successfully"})
|
223 |
-
else:
|
224 |
-
print(f"File not found: {file_path}")
|
225 |
-
return JSONResponse(status_code=404, content={"message": "File not found"})
|
226 |
-
|
227 |
-
|
228 |
-
async def execute_multi_agents(manager) -> Any:
|
229 |
-
websocket = manager.active_connections[0] if manager.active_connections else None
|
230 |
-
if websocket:
|
231 |
-
report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
|
232 |
-
return {"report": report}
|
233 |
-
else:
|
234 |
-
return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})
|
235 |
-
|
236 |
-
|
237 |
-
async def handle_websocket_communication(websocket, manager):
|
238 |
-
while True:
|
239 |
-
data = await websocket.receive_text()
|
240 |
-
if data.startswith("start"):
|
241 |
-
await handle_start_command(websocket, data, manager)
|
242 |
-
elif data.startswith("human_feedback"):
|
243 |
-
await handle_human_feedback(data)
|
244 |
-
elif data.startswith("chat"):
|
245 |
-
await handle_chat(websocket, data, manager)
|
246 |
-
else:
|
247 |
-
print("Error: Unknown command or not enough parameters provided.")
|
248 |
-
|
249 |
-
|
250 |
-
def extract_command_data(json_data: Dict) -> tuple:
|
251 |
-
return (
|
252 |
-
json_data.get("task"),
|
253 |
-
json_data.get("report_type"),
|
254 |
-
json_data.get("source_urls"),
|
255 |
-
json_data.get("document_urls"),
|
256 |
-
json_data.get("tone"),
|
257 |
-
json_data.get("headers", {}),
|
258 |
-
json_data.get("report_source")
|
259 |
-
)
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
import shutil
|
6 |
+
from typing import Dict, List, Any
|
7 |
+
from fastapi.responses import JSONResponse, FileResponse
|
8 |
+
from gpt_researcher.document.document import DocumentLoader
|
9 |
+
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
|
10 |
+
from pathlib import Path
|
11 |
+
from datetime import datetime
|
12 |
+
from fastapi import HTTPException
|
13 |
+
import logging
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.DEBUG)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
class CustomLogsHandler:
|
19 |
+
"""Custom handler to capture streaming logs from the research process"""
|
20 |
+
def __init__(self, websocket, task: str):
|
21 |
+
self.logs = []
|
22 |
+
self.websocket = websocket
|
23 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
24 |
+
self.log_file = os.path.join("/tmp/outputs", f"{sanitized_filename}.json")
|
25 |
+
self.timestamp = datetime.now().isoformat()
|
26 |
+
# Initialize log file with metadata
|
27 |
+
os.makedirs("/tmp/outputs", exist_ok=True)
|
28 |
+
with open(self.log_file, 'w') as f:
|
29 |
+
json.dump({
|
30 |
+
"timestamp": self.timestamp,
|
31 |
+
"events": [],
|
32 |
+
"content": {
|
33 |
+
"query": "",
|
34 |
+
"sources": [],
|
35 |
+
"context": [],
|
36 |
+
"report": "",
|
37 |
+
"costs": 0.0
|
38 |
+
}
|
39 |
+
}, f, indent=2)
|
40 |
+
|
41 |
+
async def send_json(self, data: Dict[str, Any]) -> None:
|
42 |
+
"""Store log data and send to websocket"""
|
43 |
+
# Send to websocket for real-time display
|
44 |
+
if self.websocket:
|
45 |
+
await self.websocket.send_json(data)
|
46 |
+
|
47 |
+
# Read current log file
|
48 |
+
with open(self.log_file, 'r') as f:
|
49 |
+
log_data = json.load(f)
|
50 |
+
|
51 |
+
# Update appropriate section based on data type
|
52 |
+
if data.get('type') == 'logs':
|
53 |
+
log_data['events'].append({
|
54 |
+
"timestamp": datetime.now().isoformat(),
|
55 |
+
"type": "event",
|
56 |
+
"data": data
|
57 |
+
})
|
58 |
+
else:
|
59 |
+
# Update content section for other types of data
|
60 |
+
log_data['content'].update(data)
|
61 |
+
|
62 |
+
# Save updated log file
|
63 |
+
with open(self.log_file, 'w') as f:
|
64 |
+
json.dump(log_data, f, indent=2)
|
65 |
+
logger.debug(f"Log entry written to: {self.log_file}")
|
66 |
+
|
67 |
+
|
68 |
+
class Researcher:
|
69 |
+
def __init__(self, query: str, report_type: str = "research_report"):
|
70 |
+
self.query = query
|
71 |
+
self.report_type = report_type
|
72 |
+
# Generate unique ID for this research task
|
73 |
+
self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
|
74 |
+
# Initialize logs handler with research ID
|
75 |
+
self.logs_handler = CustomLogsHandler(self.research_id)
|
76 |
+
self.researcher = GPTResearcher(
|
77 |
+
query=query,
|
78 |
+
report_type=report_type,
|
79 |
+
websocket=self.logs_handler
|
80 |
+
)
|
81 |
+
|
82 |
+
async def research(self) -> dict:
|
83 |
+
"""Conduct research and return paths to generated files"""
|
84 |
+
await self.researcher.conduct_research()
|
85 |
+
report = await self.researcher.write_report()
|
86 |
+
|
87 |
+
# Generate the files
|
88 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
|
89 |
+
file_paths = await generate_report_files(report, sanitized_filename)
|
90 |
+
|
91 |
+
# Get the JSON log path that was created by CustomLogsHandler
|
92 |
+
json_relative_path = os.path.relpath(self.logs_handler.log_file)
|
93 |
+
|
94 |
+
return {
|
95 |
+
"output": {
|
96 |
+
**file_paths, # Include PDF, DOCX, and MD paths
|
97 |
+
"json": json_relative_path
|
98 |
+
}
|
99 |
+
}
|
100 |
+
|
101 |
+
def sanitize_filename(filename: str) -> str:
|
102 |
+
# Split into components
|
103 |
+
prefix, timestamp, *task_parts = filename.split('_')
|
104 |
+
task = '_'.join(task_parts)
|
105 |
+
|
106 |
+
# Calculate max length for task portion
|
107 |
+
# 255 - len("/tmp/outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
|
108 |
+
max_task_length = 255 - 8 - 5 - 10 - 6 - 10 # ~216 chars for task
|
109 |
+
|
110 |
+
# Truncate task if needed
|
111 |
+
truncated_task = task[:max_task_length] if len(task) > max_task_length else task
|
112 |
+
|
113 |
+
# Reassemble and clean the filename
|
114 |
+
sanitized = f"{prefix}_{timestamp}_{truncated_task}"
|
115 |
+
return re.sub(r"[^\w\s-]", "", sanitized).strip()
|
116 |
+
|
117 |
+
|
118 |
+
async def handle_start_command(websocket, data: str, manager):
|
119 |
+
json_data = json.loads(data[6:])
|
120 |
+
task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
|
121 |
+
json_data)
|
122 |
+
|
123 |
+
if not task or not report_type:
|
124 |
+
print("Error: Missing task or report_type")
|
125 |
+
return
|
126 |
+
|
127 |
+
# Create logs handler with websocket and task
|
128 |
+
logs_handler = CustomLogsHandler(websocket, task)
|
129 |
+
# Initialize log content with query
|
130 |
+
await logs_handler.send_json({
|
131 |
+
"query": task,
|
132 |
+
"sources": [],
|
133 |
+
"context": [],
|
134 |
+
"report": ""
|
135 |
+
})
|
136 |
+
|
137 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
138 |
+
|
139 |
+
report = await manager.start_streaming(
|
140 |
+
task,
|
141 |
+
report_type,
|
142 |
+
report_source,
|
143 |
+
source_urls,
|
144 |
+
document_urls,
|
145 |
+
tone,
|
146 |
+
websocket,
|
147 |
+
headers
|
148 |
+
)
|
149 |
+
report = str(report)
|
150 |
+
file_paths = await generate_report_files(report, sanitized_filename)
|
151 |
+
# Add JSON log path to file_paths
|
152 |
+
file_paths["json"] = os.path.relpath(logs_handler.log_file)
|
153 |
+
await send_file_paths(websocket, file_paths)
|
154 |
+
|
155 |
+
|
156 |
+
async def handle_human_feedback(data: str):
|
157 |
+
feedback_data = json.loads(data[14:]) # Remove "human_feedback" prefix
|
158 |
+
print(f"Received human feedback: {feedback_data}")
|
159 |
+
# TODO: Add logic to forward the feedback to the appropriate agent or update the research state
|
160 |
+
|
161 |
+
async def handle_chat(websocket, data: str, manager):
|
162 |
+
json_data = json.loads(data[4:])
|
163 |
+
print(f"Received chat message: {json_data.get('message')}")
|
164 |
+
await manager.chat(json_data.get("message"), websocket)
|
165 |
+
|
166 |
+
async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
|
167 |
+
pdf_path = await write_md_to_pdf(report, filename)
|
168 |
+
docx_path = await write_md_to_word(report, filename)
|
169 |
+
md_path = await write_text_to_md(report, filename)
|
170 |
+
return {"pdf": pdf_path, "docx": docx_path, "md": md_path}
|
171 |
+
|
172 |
+
|
173 |
+
async def send_file_paths(websocket, file_paths: Dict[str, str]):
|
174 |
+
await websocket.send_json({"type": "path", "output": file_paths})
|
175 |
+
|
176 |
+
|
177 |
+
def get_config_dict(
|
178 |
+
langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
|
179 |
+
google_api_key: str, google_cx_key: str, bing_api_key: str,
|
180 |
+
searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
|
181 |
+
) -> Dict[str, str]:
|
182 |
+
return {
|
183 |
+
"LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
|
184 |
+
"OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
|
185 |
+
"TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
|
186 |
+
"GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
|
187 |
+
"GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
|
188 |
+
"BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
|
189 |
+
"SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
|
190 |
+
"SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
|
191 |
+
"SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
|
192 |
+
"SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
|
193 |
+
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
|
194 |
+
"DOC_PATH": os.getenv("DOC_PATH", "./my-docs"),
|
195 |
+
"RETRIEVER": os.getenv("RETRIEVER", ""),
|
196 |
+
"EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
|
197 |
+
}
|
198 |
+
|
199 |
+
|
200 |
+
def update_environment_variables(config: Dict[str, str]):
|
201 |
+
for key, value in config.items():
|
202 |
+
os.environ[key] = value
|
203 |
+
|
204 |
+
|
205 |
+
async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
|
206 |
+
file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
|
207 |
+
with open(file_path, "wb") as buffer:
|
208 |
+
shutil.copyfileobj(file.file, buffer)
|
209 |
+
print(f"File uploaded to {file_path}")
|
210 |
+
|
211 |
+
document_loader = DocumentLoader(DOC_PATH)
|
212 |
+
await document_loader.load()
|
213 |
+
|
214 |
+
return {"filename": file.filename, "path": file_path}
|
215 |
+
|
216 |
+
|
217 |
+
async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
|
218 |
+
file_path = os.path.join(DOC_PATH, os.path.basename(filename))
|
219 |
+
if os.path.exists(file_path):
|
220 |
+
os.remove(file_path)
|
221 |
+
print(f"File deleted: {file_path}")
|
222 |
+
return JSONResponse(content={"message": "File deleted successfully"})
|
223 |
+
else:
|
224 |
+
print(f"File not found: {file_path}")
|
225 |
+
return JSONResponse(status_code=404, content={"message": "File not found"})
|
226 |
+
|
227 |
+
|
228 |
+
async def execute_multi_agents(manager) -> Any:
|
229 |
+
websocket = manager.active_connections[0] if manager.active_connections else None
|
230 |
+
if websocket:
|
231 |
+
report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
|
232 |
+
return {"report": report}
|
233 |
+
else:
|
234 |
+
return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})
|
235 |
+
|
236 |
+
|
237 |
+
async def handle_websocket_communication(websocket, manager):
|
238 |
+
while True:
|
239 |
+
data = await websocket.receive_text()
|
240 |
+
if data.startswith("start"):
|
241 |
+
await handle_start_command(websocket, data, manager)
|
242 |
+
elif data.startswith("human_feedback"):
|
243 |
+
await handle_human_feedback(data)
|
244 |
+
elif data.startswith("chat"):
|
245 |
+
await handle_chat(websocket, data, manager)
|
246 |
+
else:
|
247 |
+
print("Error: Unknown command or not enough parameters provided.")
|
248 |
+
|
249 |
+
|
250 |
+
def extract_command_data(json_data: Dict) -> tuple:
|
251 |
+
return (
|
252 |
+
json_data.get("task"),
|
253 |
+
json_data.get("report_type"),
|
254 |
+
json_data.get("source_urls"),
|
255 |
+
json_data.get("document_urls"),
|
256 |
+
json_data.get("tone"),
|
257 |
+
json_data.get("headers", {}),
|
258 |
+
json_data.get("report_source")
|
259 |
+
)
|