File size: 1,788 Bytes
372531f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import asyncio
from dotenv import load_dotenv
from gpt_researcher.config.config import Config
from gpt_researcher.actions.retriever import get_retrievers
from gpt_researcher.skills.researcher import ResearchConductor
import pprint
# Load environment variables from .env file
load_dotenv()

async def test_scrape_data_by_query():
    # Initialize the Config object
    config = Config()

    # Retrieve the retrievers based on the current configuration
    retrievers = get_retrievers({}, config)
    print("Retrievers:", retrievers)

    # Create a mock researcher object with necessary attributes
    class MockResearcher:
        def init(self):
            self.retrievers = retrievers
            self.cfg = config
            self.verbose = True
            self.websocket = None
            self.scraper_manager = None  # Mock or implement scraper manager
            self.vector_store = None  # Mock or implement vector store

    researcher = MockResearcher()
    research_conductor = ResearchConductor(researcher)
    # print('research_conductor',dir(research_conductor))
    # print('MockResearcher',dir(researcher))
    # Define a sub-query to test
    sub_query = "design patterns for autonomous ai agents"

    # Iterate through all retrievers
    for retriever_class in retrievers:
        # Instantiate the retriever with the sub-query
        retriever = retriever_class(sub_query)

        # Perform the search using the current retriever
        search_results = await asyncio.to_thread(
            retriever.search, max_results=10
        )

        print("\033[35mSearch results:\033[0m")
        pprint.pprint(search_results, indent=4, width=80)

if __name__ == "__main__":
    asyncio.run(test_scrape_data_by_query())