Spaces:
Running
Running
File size: 9,398 Bytes
372531f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import Optional, List, Dict, Any, Set
import json
from .config import Config
from .memory import Memory
from .utils.enum import ReportSource, ReportType, Tone
from .llm_provider import GenericLLMProvider
from .vector_store import VectorStoreWrapper
# Research skills
from .skills.researcher import ResearchConductor
from .skills.writer import ReportGenerator
from .skills.context_manager import ContextManager
from .skills.browser import BrowserManager
from .skills.curator import SourceCurator
from .actions import (
add_references,
extract_headers,
extract_sections,
table_of_contents,
get_retrievers,
choose_agent
)
class GPTResearcher:
def __init__(
self,
query: str,
report_type: str = ReportType.ResearchReport.value,
report_format: str = "markdown",
report_source: str = ReportSource.Web.value,
tone: Tone = Tone.Objective,
source_urls=None,
document_urls=None,
complement_source_urls=False,
documents=None,
vector_store=None,
vector_store_filter=None,
config_path=None,
websocket=None,
agent=None,
role=None,
parent_query: str = "",
subtopics: list = [],
visited_urls: set = set(),
verbose: bool = True,
context=[],
headers: dict = None,
max_subtopics: int = 5,
log_handler=None,
):
self.query = query
self.report_type = report_type
self.cfg = Config(config_path)
self.llm = GenericLLMProvider(self.cfg)
self.report_source = report_source if report_source else getattr(self.cfg, 'report_source', None)
self.report_format = report_format
self.max_subtopics = max_subtopics
self.tone = tone if isinstance(tone, Tone) else Tone.Objective
self.source_urls = source_urls
self.document_urls = document_urls
self.complement_source_urls: bool = complement_source_urls
self.research_sources = [] # The list of scraped sources including title, content and images
self.research_images = [] # The list of selected research images
self.documents = documents
self.vector_store = VectorStoreWrapper(vector_store) if vector_store else None
self.vector_store_filter = vector_store_filter
self.websocket = websocket
self.agent = agent
self.role = role
self.parent_query = parent_query
self.subtopics = subtopics
self.visited_urls = visited_urls
self.verbose = verbose
self.context = context
self.headers = headers or {}
self.research_costs = 0.0
self.retrievers = get_retrievers(self.headers, self.cfg)
self.memory = Memory(
self.cfg.embedding_provider, self.cfg.embedding_model, **self.cfg.embedding_kwargs
)
self.log_handler = log_handler
# Initialize components
self.research_conductor: ResearchConductor = ResearchConductor(self)
self.report_generator: ReportGenerator = ReportGenerator(self)
self.context_manager: ContextManager = ContextManager(self)
self.scraper_manager: BrowserManager = BrowserManager(self)
self.source_curator: SourceCurator = SourceCurator(self)
async def _log_event(self, event_type: str, **kwargs):
"""Helper method to handle logging events"""
if self.log_handler:
try:
if event_type == "tool":
await self.log_handler.on_tool_start(kwargs.get('tool_name', ''), **kwargs)
elif event_type == "action":
await self.log_handler.on_agent_action(kwargs.get('action', ''), **kwargs)
elif event_type == "research":
await self.log_handler.on_research_step(kwargs.get('step', ''), kwargs.get('details', {}))
# Add direct logging as backup
import logging
research_logger = logging.getLogger('research')
research_logger.info(f"{event_type}: {json.dumps(kwargs, default=str)}")
except Exception as e:
import logging
logging.getLogger('research').error(f"Error in _log_event: {e}", exc_info=True)
async def conduct_research(self):
await self._log_event("research", step="start", details={
"query": self.query,
"report_type": self.report_type,
"agent": self.agent,
"role": self.role
})
if not (self.agent and self.role):
await self._log_event("action", action="choose_agent")
self.agent, self.role = await choose_agent(
query=self.query,
cfg=self.cfg,
parent_query=self.parent_query,
cost_callback=self.add_costs,
headers=self.headers,
)
await self._log_event("action", action="agent_selected", details={
"agent": self.agent,
"role": self.role
})
await self._log_event("research", step="conducting_research", details={
"agent": self.agent,
"role": self.role
})
self.context = await self.research_conductor.conduct_research()
await self._log_event("research", step="research_completed", details={
"context_length": len(self.context)
})
return self.context
async def write_report(self, existing_headers: list = [], relevant_written_contents: list = [], ext_context=None) -> str:
await self._log_event("research", step="writing_report", details={
"existing_headers": existing_headers,
"context_source": "external" if ext_context else "internal"
})
report = await self.report_generator.write_report(
existing_headers,
relevant_written_contents,
ext_context or self.context
)
await self._log_event("research", step="report_completed", details={
"report_length": len(report)
})
return report
async def write_report_conclusion(self, report_body: str) -> str:
await self._log_event("research", step="writing_conclusion")
conclusion = await self.report_generator.write_report_conclusion(report_body)
await self._log_event("research", step="conclusion_completed")
return conclusion
async def write_introduction(self):
await self._log_event("research", step="writing_introduction")
intro = await self.report_generator.write_introduction()
await self._log_event("research", step="introduction_completed")
return intro
async def get_subtopics(self):
return await self.report_generator.get_subtopics()
async def get_draft_section_titles(self, current_subtopic: str):
return await self.report_generator.get_draft_section_titles(current_subtopic)
async def get_similar_written_contents_by_draft_section_titles(
self,
current_subtopic: str,
draft_section_titles: List[str],
written_contents: List[Dict],
max_results: int = 10
) -> List[str]:
return await self.context_manager.get_similar_written_contents_by_draft_section_titles(
current_subtopic,
draft_section_titles,
written_contents,
max_results
)
# Utility methods
def get_research_images(self, top_k=10) -> List[Dict[str, Any]]:
return self.research_images[:top_k]
def add_research_images(self, images: List[Dict[str, Any]]) -> None:
self.research_images.extend(images)
def get_research_sources(self) -> List[Dict[str, Any]]:
return self.research_sources
def add_research_sources(self, sources: List[Dict[str, Any]]) -> None:
self.research_sources.extend(sources)
def add_references(self, report_markdown: str, visited_urls: set) -> str:
return add_references(report_markdown, visited_urls)
def extract_headers(self, markdown_text: str) -> List[Dict]:
return extract_headers(markdown_text)
def extract_sections(self, markdown_text: str) -> List[Dict]:
return extract_sections(markdown_text)
def table_of_contents(self, markdown_text: str) -> str:
return table_of_contents(markdown_text)
def get_source_urls(self) -> list:
return list(self.visited_urls)
def get_research_context(self) -> list:
return self.context
def get_costs(self) -> float:
return self.research_costs
def set_verbose(self, verbose: bool):
self.verbose = verbose
def add_costs(self, cost: float) -> None:
if not isinstance(cost, (float, int)):
raise ValueError("Cost must be an integer or float")
self.research_costs += cost
if self.log_handler:
self._log_event("research", step="cost_update", details={
"cost": cost,
"total_cost": self.research_costs
})
|