import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch # Load the model and tokenizer from Hugging Face Hub model_name = "Shreshth16/My_PEGASUS_Model" # Replace with your model's repo name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def summarize(text): # Prepend the task prefix if required during training input_text = text inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device) summary_ids = model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary # Define Gradio interface iface = gr.Interface( fn=summarize, inputs=gr.Textbox(lines=10, placeholder="Enter text to summarize..."), outputs=gr.Textbox(), title="PEGASUS Summarization", description="Enter text to generate a summary using a trained PEGASUS model." ) iface.launch()