File size: 1,112 Bytes
ab702b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

# Load the model and tokenizer from Hugging Face Hub
model_name = "Shreshth16/My_PEGASUS_Model"  # Replace with your model's repo name

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def summarize(text):
    # Prepend the task prefix if required during training
    input_text = text
    inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device)
    summary_ids = model.generate(inputs, max_length=150, num_beams=4, early_stopping=True)
    summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return summary

# Define Gradio interface
iface = gr.Interface(
    fn=summarize,
    inputs=gr.Textbox(lines=10, placeholder="Enter text to summarize..."),
    outputs=gr.Textbox(),
    title="PEGASUS Summarization",
    description="Enter text to generate a summary using a trained PEGASUS model."
)

iface.launch()