Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from ydata_profiling import ProfileReport
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from langchain.llms import HuggingFaceHub
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
from langchain.tools.python.tool import PythonAstREPLTool
|
14 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
15 |
+
from langchain_experimental.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
|
16 |
+
from langchain.agents.agent_types import AgentType
|
17 |
+
|
18 |
+
# Set page configuration
|
19 |
+
st.set_page_config(page_title="Interactive Data Profiler & Chat", layout="wide", page_icon="π")
|
20 |
+
|
21 |
+
# Create session states for DataFrame and chat history if they don't exist
|
22 |
+
if 'df' not in st.session_state:
|
23 |
+
st.session_state.df = None
|
24 |
+
if 'chat_history' not in st.session_state:
|
25 |
+
st.session_state.chat_history = []
|
26 |
+
if 'suggestions' not in st.session_state:
|
27 |
+
st.session_state.suggestions = []
|
28 |
+
|
29 |
+
# Initialize Hugging Face API
|
30 |
+
def get_llm():
|
31 |
+
# Using a small but capable open-source model
|
32 |
+
llm = HuggingFaceHub(
|
33 |
+
repo_id="google/flan-t5-large",
|
34 |
+
model_kwargs={"temperature": 0.1, "max_length": 512},
|
35 |
+
huggingfacehub_api_token=os.environ.get("HUGGINGFACE_API_TOKEN", "")
|
36 |
+
)
|
37 |
+
return llm
|
38 |
+
|
39 |
+
# Function to generate report
|
40 |
+
def generate_profile_report(df):
|
41 |
+
with st.spinner("Generating profile report..."):
|
42 |
+
profile = ProfileReport(df,
|
43 |
+
title="Profiling Report",
|
44 |
+
explorative=True,
|
45 |
+
minimal=True) # Minimal for faster processing
|
46 |
+
return profile
|
47 |
+
|
48 |
+
# Function to generate query suggestions
|
49 |
+
def generate_suggestions(df):
|
50 |
+
# Get basic info about the dataframe
|
51 |
+
num_rows = df.shape[0]
|
52 |
+
num_cols = df.shape[1]
|
53 |
+
column_names = df.columns.tolist()
|
54 |
+
data_types = df.dtypes.astype(str).tolist()
|
55 |
+
|
56 |
+
# Sample suggestions based on dataframe structure
|
57 |
+
suggestions = [
|
58 |
+
f"How many rows are in this dataset?",
|
59 |
+
f"What are all the column names?",
|
60 |
+
f"Show me the first 5 rows",
|
61 |
+
f"What is the average of {column_names[0] if len(column_names) > 0 else 'column'}"
|
62 |
+
]
|
63 |
+
|
64 |
+
# Add column-specific suggestions
|
65 |
+
for col, dtype in zip(column_names[:min(3, len(column_names))], data_types[:min(3, len(data_types))]):
|
66 |
+
if 'int' in dtype or 'float' in dtype:
|
67 |
+
suggestions.append(f"What is the mean value of {col}?")
|
68 |
+
suggestions.append(f"What is the maximum value of {col}?")
|
69 |
+
elif 'object' in dtype or 'str' in dtype:
|
70 |
+
suggestions.append(f"What are the unique values in {col}?")
|
71 |
+
suggestions.append(f"How many missing values in {col}?")
|
72 |
+
|
73 |
+
return suggestions
|
74 |
+
|
75 |
+
# Function to execute pandas operations safely
|
76 |
+
def execute_pandas_query(df, query):
|
77 |
+
try:
|
78 |
+
# Create pandas agent
|
79 |
+
agent = create_pandas_dataframe_agent(
|
80 |
+
llm=get_llm(),
|
81 |
+
df=df,
|
82 |
+
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
83 |
+
verbose=True
|
84 |
+
)
|
85 |
+
|
86 |
+
# Execute query
|
87 |
+
result = agent.run(query)
|
88 |
+
return result
|
89 |
+
except Exception as e:
|
90 |
+
# Fallback to basic operations if agent fails
|
91 |
+
if "rows" in query.lower() and "how many" in query.lower():
|
92 |
+
return f"The dataset has {df.shape[0]} rows."
|
93 |
+
elif "columns" in query.lower() and "how many" in query.lower():
|
94 |
+
return f"The dataset has {df.shape[1]} columns."
|
95 |
+
elif "column names" in query.lower():
|
96 |
+
return f"The column names are: {', '.join(df.columns.tolist())}"
|
97 |
+
elif "first" in query.lower() and "rows" in query.lower():
|
98 |
+
num = 5 # Default
|
99 |
+
for word in query.split():
|
100 |
+
if word.isdigit():
|
101 |
+
num = int(word)
|
102 |
+
break
|
103 |
+
return df.head(num).to_string()
|
104 |
+
elif "describe" in query.lower():
|
105 |
+
return df.describe().to_string()
|
106 |
+
else:
|
107 |
+
return f"I couldn't process that query. Error: {str(e)}"
|
108 |
+
|
109 |
+
# Main app header
|
110 |
+
st.title("π Interactive Data Profiler & Chat")
|
111 |
+
st.markdown("""
|
112 |
+
Upload your CSV file to get detailed profiling and ask questions about your data!
|
113 |
+
This app combines interactive data profiling with a chat interface for data exploration.
|
114 |
+
""")
|
115 |
+
|
116 |
+
# File uploader
|
117 |
+
uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
|
118 |
+
|
119 |
+
# Process uploaded file
|
120 |
+
if uploaded_file is not None:
|
121 |
+
try:
|
122 |
+
# Read CSV into DataFrame
|
123 |
+
df = pd.read_csv(uploaded_file)
|
124 |
+
st.session_state.df = df
|
125 |
+
st.success(f"β
File uploaded successfully! Found {df.shape[0]} rows and {df.shape[1]} columns.")
|
126 |
+
|
127 |
+
# Generate suggestions when a new file is uploaded
|
128 |
+
if len(st.session_state.suggestions) == 0:
|
129 |
+
st.session_state.suggestions = generate_suggestions(df)
|
130 |
+
|
131 |
+
# Create tabs for different functionalities
|
132 |
+
tab1, tab2 = st.tabs(["π Data Profiling", "π¬ Data Chat"])
|
133 |
+
|
134 |
+
# Tab 1: Data Profiling
|
135 |
+
with tab1:
|
136 |
+
st.header("Data Profiling")
|
137 |
+
|
138 |
+
# Basic info
|
139 |
+
col1, col2, col3 = st.columns(3)
|
140 |
+
with col1:
|
141 |
+
st.metric("Rows", df.shape[0])
|
142 |
+
with col2:
|
143 |
+
st.metric("Columns", df.shape[1])
|
144 |
+
with col3:
|
145 |
+
st.metric("Missing Values", df.isna().sum().sum())
|
146 |
+
|
147 |
+
# Show raw data sample
|
148 |
+
with st.expander("Preview Data"):
|
149 |
+
st.dataframe(df.head(10))
|
150 |
+
|
151 |
+
# Generate the profile report
|
152 |
+
profile = generate_profile_report(df)
|
153 |
+
|
154 |
+
# Convert report to HTML and display
|
155 |
+
report_html = profile.to_html()
|
156 |
+
st.components.v1.html(report_html, height=1000, scrolling=True)
|
157 |
+
|
158 |
+
# Provide download button
|
159 |
+
st.write("### Download the Profiling Report")
|
160 |
+
report_bytes = report_html.encode('utf-8')
|
161 |
+
st.download_button(
|
162 |
+
label="Download Report (HTML)",
|
163 |
+
data=report_bytes,
|
164 |
+
file_name="profiling_report.html",
|
165 |
+
mime="text/html"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Tab 2: Interactive Chat
|
169 |
+
with tab2:
|
170 |
+
st.header("Chat with Your Data")
|
171 |
+
st.info("Ask questions about your data and get instant answers!")
|
172 |
+
|
173 |
+
# Chat input and suggested questions
|
174 |
+
user_question = st.text_input("Your question:", key="question_input")
|
175 |
+
|
176 |
+
# Show suggestion chips
|
177 |
+
st.write("Suggested questions:")
|
178 |
+
cols = st.columns(2)
|
179 |
+
for i, suggestion in enumerate(st.session_state.suggestions):
|
180 |
+
col_idx = i % 2
|
181 |
+
with cols[col_idx]:
|
182 |
+
if st.button(suggestion, key=f"suggestion_{i}"):
|
183 |
+
user_question = suggestion
|
184 |
+
st.session_state.question_input = suggestion
|
185 |
+
st.experimental_rerun()
|
186 |
+
|
187 |
+
# Process question
|
188 |
+
if user_question:
|
189 |
+
st.session_state.chat_history.append({"role": "user", "content": user_question})
|
190 |
+
|
191 |
+
# Get answer
|
192 |
+
with st.spinner("Thinking..."):
|
193 |
+
answer = execute_pandas_query(df, user_question)
|
194 |
+
|
195 |
+
# Add answer to chat history
|
196 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
197 |
+
|
198 |
+
# Display chat history
|
199 |
+
st.write("### Conversation History")
|
200 |
+
for message in st.session_state.chat_history:
|
201 |
+
if message["role"] == "user":
|
202 |
+
st.markdown(f"**You:** {message['content']}")
|
203 |
+
else:
|
204 |
+
st.markdown(f"**Assistant:** {message['content']}")
|
205 |
+
st.markdown("---")
|
206 |
+
|
207 |
+
# Clear chat button
|
208 |
+
if st.button("Clear Chat History"):
|
209 |
+
st.session_state.chat_history = []
|
210 |
+
st.experimental_rerun()
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
st.error(f"An error occurred: {str(e)}")
|
214 |
+
else:
|
215 |
+
st.info("π Please upload a CSV file to begin.")
|
216 |
+
|
217 |
+
# Placeholder visuals
|
218 |
+
st.markdown("### What you can do with this app:")
|
219 |
+
col1, col2 = st.columns(2)
|
220 |
+
with col1:
|
221 |
+
st.markdown("**π Data Profiling**")
|
222 |
+
st.markdown("- Automatic data quality assessment")
|
223 |
+
st.markdown("- Column statistics and distributions")
|
224 |
+
st.markdown("- Correlation analysis")
|
225 |
+
st.markdown("- Missing values analysis")
|
226 |
+
with col2:
|
227 |
+
st.markdown("**π¬ Interactive Data Chat**")
|
228 |
+
st.markdown("- Ask natural language questions")
|
229 |
+
st.markdown("- Get instant insights")
|
230 |
+
st.markdown("- Suggested questions for quick exploration")
|
231 |
+
st.markdown("- No coding required!")
|