Spaces:
Running
Running
# utils.py | |
""" | |
Financial Chatbot Utilities | |
Core functionality for RAG-based financial chatbot using Streamlit and Hugging Face | |
""" | |
import os | |
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from collections import deque | |
from typing import Tuple | |
import torch | |
# LangChain components for document processing | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_huggingface import HuggingFaceEmbeddings | |
# Models and Machine Learning components | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from rank_bm25 import BM25Okapi | |
from sentence_transformers import CrossEncoder | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Download NLTK stopwords for text preprocessing | |
nltk.download('stopwords') | |
stop_words = set(stopwords.words('english')) | |
# nltk.data.path.append('./nltk_data') # Point to local NLTK data | |
# stop_words = set(nltk.corpus.stopwords.words('english')) | |
# mount | |
import sys | |
sys.path.append('/mount/src/gen_ai_dev') | |
# Configuration for Data Paths, Model Selection, and Settings | |
# The code is using Microsoft's Phi-2 (microsoft/phi-2) as the SLM (Small Language Model) for generating answers based on retrieved financial data. | |
# Phi-2 is utilized for text generation based on retrieved financial data. | |
DATA_PATH = "./Infy financial report/" | |
DATA_FILES = ["INFY_2022_2023.pdf", "INFY_2023_2024.pdf"] | |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
LLM_MODEL = "microsoft/phi-2" | |
# Environment settings | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
os.environ["CHROMA_DISABLE_TELEMETRY"] = "true" | |
# Suppress specific warnings | |
import warnings | |
warnings.filterwarnings("ignore", message=".*oneDNN custom operations.*") | |
warnings.filterwarnings("ignore", message=".*cuBLAS factory.*") | |
# ------------------------------ | |
# Load and Chunk Documents (RAG - Retrieval Step) | |
# ------------------------------ | |
def load_and_chunk_documents(): | |
"""Load and split PDF documents into manageable chunks""" | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=500, | |
chunk_overlap=100, | |
separators=["\n\n", "\n", ".", " ", ""] | |
) | |
all_chunks = [] | |
for file in DATA_FILES: | |
try: | |
loader = PyPDFLoader(os.path.join(DATA_PATH, file)) | |
pages = loader.load() | |
all_chunks.extend(text_splitter.split_documents(pages)) | |
except Exception as e: | |
print(f"Error loading {file}: {e}") | |
return all_chunks | |
# ------------------------------ | |
# Vector Store and Search Setup | |
# ------------------------------ | |
text_chunks = load_and_chunk_documents() | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
# Store embeddings in Chroma DB for similarity search | |
vector_db = Chroma.from_documents( | |
documents=text_chunks, | |
embedding=embeddings, | |
persist_directory="./chroma_db" | |
) | |
vector_db.persist() | |
# BM25 for keyword-based search (Lexical Search) | |
bm25_corpus = [chunk.page_content for chunk in text_chunks] | |
bm25_tokenized = [doc.split() for doc in bm25_corpus] | |
bm25 = BM25Okapi(bm25_tokenized) | |
# Cross-encoder for ranking retrieved documents based on query similarity | |
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# ------------------------------ | |
# Conversation Memory (Context Awareness in RAG) | |
# ------------------------------ | |
class ConversationMemory: | |
"""Stores recent conversation context""" | |
def __init__(self, max_size=5): | |
self.buffer = deque(maxlen=max_size) | |
def add_interaction(self, query: str, response: str) -> None: | |
self.buffer.append((query, response)) | |
def get_context(self) -> str: | |
return "\n".join( | |
[f"Previous Q: {q}\nPrevious A: {r}" for q, r in self.buffer] | |
) | |
memory = ConversationMemory(max_size=3) | |
# ------------------------------ | |
# Hybrid Retrieval (Combining Semantic + Lexical Search) | |
# ------------------------------ | |
def hybrid_retrieval(query: str, top_k: int = 5) -> str: | |
try: | |
# Semantic search | |
semantic_results = vector_db.similarity_search(query, k=top_k * 2) | |
print(f"\n\n[For Debug Only] Semantic Results: {semantic_results}") | |
# Keyword search | |
keyword_results = bm25.get_top_n(query.split(), bm25_corpus, n=top_k * 2) | |
print(f"\n\n[For Debug Only] Keyword Results: {keyword_results}\n\n") | |
# Combine and deduplicate results | |
combined = [] | |
seen = set() | |
for doc in semantic_results: | |
content = doc.page_content | |
if content not in seen: | |
combined.append((content, "semantic")) | |
seen.add(content) | |
for doc in keyword_results: | |
if doc not in seen: | |
combined.append((doc, "keyword")) | |
seen.add(doc) | |
# Re-rank results using cross-encoder | |
pairs = [(query, content) for content, _ in combined] | |
scores = cross_encoder.predict(pairs) | |
# Sort by scores | |
sorted_results = sorted( | |
zip(combined, scores), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
final_results = [f"[{source}] {content}" for (content, source), _ in sorted_results[:top_k]] | |
memory_context = memory.get_context() | |
if memory_context: | |
final_results.append(f"[memory] {memory_context}") | |
return "\n\n".join(final_results) | |
except Exception as e: | |
print(f"Retrieval error: {e}") | |
return "" | |
# ------------------------------ | |
# Safety Guardrails | |
# ------------------------------ | |
class SafetyGuard: | |
"""Validates input and filters output""" | |
def __init__(self): | |
# self.financial_terms = { | |
# 'revenue', 'profit', 'ebitda', 'balance', 'cash', | |
# 'income', 'fiscal', 'growth', 'margin', 'expense' | |
# } | |
self.blocked_topics = { | |
'politics', 'sports', 'entertainment', 'religion', | |
'medical', 'hypothetical', 'opinion', 'personal' | |
} | |
def validate_input(self, query: str) -> Tuple[bool, str]: | |
query_lower = query.lower() | |
# if not any(term in query_lower for term in self.financial_terms): | |
# return False, "Please ask financial questions." | |
if any(topic in query_lower for topic in self.blocked_topics): | |
return False, "I only discuss financial topics." | |
return True, "" | |
def filter_output(self, response: str) -> str: | |
phrases_to_remove = { | |
"I'm not sure", "I don't know", "maybe", | |
"possibly", "could be", "uncertain", "perhaps" | |
} | |
for phrase in phrases_to_remove: | |
response = response.replace(phrase, "") | |
sentences = re.split(r'[.!?]', response) | |
if len(sentences) > 2: | |
response = '. '.join(sentences[:2]) + '.' | |
return response.strip() | |
guard = SafetyGuard() | |
# ------------------------------ | |
# LLM Initialization (SLM for Text Generation) | |
# ------------------------------ | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
LLM_MODEL, | |
device_map="cpu", | |
torch_dtype=torch.float32 | |
) | |
generator = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=400, | |
do_sample=True, | |
temperature=0.3, | |
top_k=30, | |
top_p=0.9, | |
repetition_penalty=1.2 | |
) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
# ------------------------------ | |
# Response Generation | |
# ------------------------------ | |
def extract_final_response(full_response: str) -> str: | |
parts = full_response.split("<|im_start|>assistant") | |
if len(parts) > 1: | |
response = parts[-1].split("<|im_end|>")[0] | |
return re.sub(r'\s+', ' ', response).strip() | |
return full_response | |
def generate_answer(query: str) -> Tuple[str, float]: | |
try: | |
is_valid, msg = guard.validate_input(query) | |
if not is_valid: | |
return msg, 0.0 | |
context = hybrid_retrieval(query) | |
vector_db.persist() | |
prompt = f"""<|im_start|>system | |
You are a financial analyst. Provide a brief answer using the context. | |
Context: {context}<|im_end|> | |
<|im_start|>user | |
{query}<|im_end|> | |
<|im_start|>assistant | |
Answer:""" | |
# Takes a prompt (financial query + context from retrieved documents). | |
# Generates a financial answer using Phi-2. generated_text contains the full response. | |
print(f"\n\n[For Debug Only] Prompt: {prompt}\n\n") | |
response = generator(prompt)[0]['generated_text'] | |
print(f"\n\n[For Debug Only] response: {response}\n\n") | |
clean_response = extract_final_response(response) | |
clean_response = guard.filter_output(clean_response) | |
print(f"\n\n[For Debug Only] clean_response: {clean_response}\n\n") | |
query_embed = embeddings.embed_query(query) | |
print(f"\n\n[For Debug Only] query_embed: {query_embed}\n\n") | |
response_embed = embeddings.embed_query(clean_response) | |
print(f"\n\n[For Debug Only] response_embed: {response_embed}\n\n") | |
confidence = cosine_similarity([query_embed], [response_embed])[0][0] | |
print(f"\n\n[For Debug Only] confidence: {confidence}\n\n") | |
memory.add_interaction(query, clean_response) | |
print(f"\n\n[For Debug Only] I'm Done \n\n") | |
return clean_response, round(confidence, 2) | |
except Exception as e: | |
return f"Error processing request: {e}", 0.0 |