Shiv22419 commited on
Commit
043a0f4
·
verified ·
1 Parent(s): 501735a

Delete AI_legal

Browse files
AI_legal/.streamlit/config.toml DELETED
@@ -1,6 +0,0 @@
1
- [theme]
2
- base="dark"
3
- primaryColor="#4ba3ff"
4
- backgroundColor="#0e1721"
5
- secondaryBackgroundColor="#142433"
6
- font = "sans serif"
 
 
 
 
 
 
 
AI_legal/Ingest.py DELETED
@@ -1,61 +0,0 @@
1
- import ray
2
- import logging
3
- from langchain_community.document_loaders import DirectoryLoader
4
- from langchain_community.embeddings import HuggingFaceEmbeddings
5
- from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain_community.vectorstores import FAISS
7
- from faiss import IndexFlatL2 # Assuming using L2 distance for simplicity
8
-
9
- # Initialize Ray
10
- ray.init()
11
-
12
- # Set up basic configuration for logging
13
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
14
-
15
- # Load documents with logging
16
- logging.info("Loading documents...")
17
- loader = DirectoryLoader('data', glob="./*.txt")
18
- documents = loader.load()
19
-
20
- # Extract text from documents and split into manageable texts with logging
21
- logging.info("Extracting and splitting texts from documents...")
22
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
23
- texts = []
24
- for document in documents:
25
- if hasattr(document, 'get_text'):
26
- text_content = document.get_text() # Adjust according to actual method
27
- else:
28
- text_content = "" # Default to empty string if no text method is available
29
-
30
- texts.extend(text_splitter.split_text(text_content))
31
-
32
- # Define embedding function
33
- def embedding_function(text):
34
- embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
35
- return embeddings_model.embed_query(text)
36
-
37
- # Create FAISS index for embeddings
38
- index = IndexFlatL2(768) # Dimension of embeddings, adjust as needed
39
-
40
- # Assuming docstore as a simple dictionary to store document texts
41
- docstore = {i: text for i, text in enumerate(texts)}
42
- index_to_docstore_id = {i: i for i in range(len(texts))}
43
-
44
- # Initialize FAISS
45
- faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
46
-
47
- # Process and store embeddings
48
- logging.info("Storing embeddings in FAISS...")
49
- for i, text in enumerate(texts):
50
- embedding = embedding_function(text)
51
- faiss_db.add_documents([embedding])
52
-
53
- # Exporting the vector embeddings database with logging
54
- logging.info("Exporting the vector embeddings database...")
55
- faiss_db.save_local("ipc_embed_db")
56
-
57
- # Log a message to indicate the completion of the process
58
- logging.info("Process completed successfully.")
59
-
60
- # Shutdown Ray after the process
61
- ray.shutdown()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI_legal/app.py DELETED
@@ -1,127 +0,0 @@
1
- import time
2
- import os
3
- import streamlit as st
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.embeddings import HuggingFaceEmbeddings
6
- from langchain.prompts import PromptTemplate
7
- from langchain.memory import ConversationBufferWindowMemory
8
- from langchain.chains import ConversationalRetrievalChain
9
- from langchain_together import Together
10
-
11
- from footer import footer
12
-
13
- # Set the Streamlit page configuration and theme
14
- st.set_page_config(page_title="BharatLAW", layout="centered")
15
-
16
- # Display the logo image
17
- col1, col2, col3 = st.columns([1, 30, 1])
18
- with col2:
19
- st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True)
20
-
21
- def hide_hamburger_menu():
22
- st.markdown("""
23
- <style>
24
- #MainMenu {visibility: hidden;}
25
- footer {visibility: hidden;}
26
- </style>
27
- """, unsafe_allow_html=True)
28
-
29
- hide_hamburger_menu()
30
-
31
- # Initialize session state for messages and memory
32
- if "messages" not in st.session_state:
33
- st.session_state.messages = []
34
-
35
- if "memory" not in st.session_state:
36
- st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
37
-
38
- @st.cache_resource
39
- def load_embeddings():
40
- """Load and cache the embeddings model."""
41
- return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
42
-
43
- embeddings = load_embeddings()
44
- db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
45
- db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
46
-
47
- prompt_template = """
48
- <s>[INST]
49
- As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
50
- - Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
51
- - Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
52
- - Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
53
- - Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
54
- - Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
55
- - Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
56
-
57
- CONTEXT: {context}
58
- CHAT HISTORY: {chat_history}
59
- QUESTION: {question}
60
- ANSWER:
61
- - [Detail the first key aspect of the law, ensuring it reflects general application]
62
- - [Provide a concise explanation of how the law is typically interpreted or applied]
63
- - [Correct a common misconception or clarify a frequently misunderstood aspect]
64
- - [Detail any exceptions to the general rule, if applicable]
65
- - [Include any additional relevant information that directly relates to the user's query]
66
- </s>[INST]
67
- """
68
-
69
-
70
-
71
- prompt = PromptTemplate(template=prompt_template,
72
- input_variables=['context', 'question', 'chat_history'])
73
-
74
- api_key = os.getenv('TOGETHER_API_KEY')
75
- llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
76
-
77
- qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
78
-
79
- def extract_answer(full_response):
80
- """Extracts the answer from the LLM's full response by removing the instructional text."""
81
- answer_start = full_response.find("Response:")
82
- if answer_start != -1:
83
- answer_start += len("Response:")
84
- answer_end = len(full_response)
85
- return full_response[answer_start:answer_end].strip()
86
- return full_response
87
-
88
- def reset_conversation():
89
- st.session_state.messages = []
90
- st.session_state.memory.clear()
91
-
92
- for message in st.session_state.messages:
93
- with st.chat_message(message["role"]):
94
- st.write(message["content"])
95
-
96
-
97
- input_prompt = st.chat_input("Say something...")
98
- if input_prompt:
99
- with st.chat_message("user"):
100
- st.markdown(f"**You:** {input_prompt}")
101
-
102
- st.session_state.messages.append({"role": "user", "content": input_prompt})
103
- with st.chat_message("assistant"):
104
- with st.spinner("Thinking 💡..."):
105
- result = qa.invoke(input=input_prompt)
106
- message_placeholder = st.empty()
107
- answer = extract_answer(result["answer"])
108
-
109
- # Initialize the response message
110
- full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n"
111
- for chunk in answer:
112
- # Simulate typing by appending chunks of the response over time
113
- full_response += chunk
114
- time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
115
- message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
116
-
117
- st.session_state.messages.append({"role": "assistant", "content": answer})
118
-
119
- if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
120
- st.experimental_rerun()
121
-
122
-
123
-
124
- # Define the CSS to style the footer
125
- footer()
126
-
127
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI_legal/data/ipc_law.txt DELETED
The diff for this file is too large to render. See raw diff
 
AI_legal/footer.py DELETED
@@ -1,68 +0,0 @@
1
- import streamlit as st
2
- from htbuilder import HtmlElement, div, a, p, img, styles
3
- from htbuilder.units import percent, px
4
-
5
-
6
- def image(src_as_string, **style):
7
- return img(src=src_as_string, style=styles(**style))
8
-
9
-
10
- def link(link, text, **style):
11
- return a(_href=link, _target="_blank", style=styles(**style))(text)
12
-
13
-
14
- def layout(*args):
15
-
16
- style = """
17
- <style>
18
- # MainMenu {visibility: hidden;}
19
- footer {visibility: hidden;}
20
- .stApp { bottom: 40px; }
21
- .st-emotion-cache-139wi93 {
22
- width: 100%;
23
- padding: 1rem 1rem 15px;
24
- max-width: 46rem;
25
- }
26
- </style>
27
- """
28
-
29
- style_div = styles(
30
- position="fixed",
31
- left=0,
32
- bottom=0,
33
- margin=px(0, 0, 0, 0),
34
- width=percent(100),
35
- color="white",
36
- text_align="center",
37
- height="auto",
38
- opacity=1
39
- )
40
-
41
- body = p()
42
- foot = div(
43
- style=style_div
44
- )(
45
- body
46
- )
47
-
48
- st.markdown(style, unsafe_allow_html=True)
49
-
50
- for arg in args:
51
- if isinstance(arg, str):
52
- body(arg)
53
-
54
- elif isinstance(arg, HtmlElement):
55
- body(arg)
56
-
57
- st.markdown(str(foot), unsafe_allow_html=True)
58
-
59
-
60
- def footer():
61
- myargs = [
62
- "Made with ❤️ by Nikhil, Mihir, Nilay",
63
- ]
64
- layout(*myargs)
65
-
66
-
67
- if __name__ == "__main__":
68
- footer()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI_legal/images/banner.png DELETED
Binary file (954 kB)
 
AI_legal/requirements.txt DELETED
@@ -1,13 +0,0 @@
1
- langchain==0.1.15
2
- pypdf
3
- transformers==4.39.3
4
- sentence-transformers
5
- accelerate
6
- faiss-cpu
7
- streamlit==1.33.0
8
- langchain-fireworks
9
- einops
10
- langchain-together
11
- ray==2.10.0
12
- unstructured
13
- htbuilder