Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from threading import Thread
|
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
import spaces
|
|
|
|
| 8 |
|
| 9 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
| 10 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
@@ -22,18 +23,25 @@ def model_inference(input_dict, history):
|
|
| 22 |
|
| 23 |
# Load images if provided
|
| 24 |
if len(files) > 1:
|
| 25 |
-
images = [load_image(image) for image in files]
|
|
|
|
| 26 |
elif len(files) == 1:
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
else:
|
| 29 |
images = []
|
|
|
|
| 30 |
|
| 31 |
# Validate input
|
| 32 |
-
if text == "" and not images:
|
| 33 |
-
gr.Error("Please input a query and optionally image(s).")
|
| 34 |
return
|
| 35 |
-
if text == "" and images:
|
| 36 |
-
gr.Error("Please input a text query along with the image(s).")
|
| 37 |
return
|
| 38 |
|
| 39 |
# Prepare messages for the model
|
|
@@ -42,18 +50,24 @@ def model_inference(input_dict, history):
|
|
| 42 |
"role": "user",
|
| 43 |
"content": [
|
| 44 |
*[{"type": "image", "image": image} for image in images],
|
|
|
|
| 45 |
{"type": "text", "text": text},
|
| 46 |
],
|
| 47 |
}
|
| 48 |
]
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
# Apply chat template and process inputs
|
| 51 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 52 |
inputs = processor(
|
| 53 |
text=[prompt],
|
| 54 |
-
images=
|
| 55 |
-
|
| 56 |
padding=True,
|
|
|
|
|
|
|
| 57 |
).to("cuda")
|
| 58 |
|
| 59 |
# Set up streamer for real-time output
|
|
@@ -76,7 +90,6 @@ def model_inference(input_dict, history):
|
|
| 76 |
|
| 77 |
# Example inputs
|
| 78 |
examples = [
|
| 79 |
-
|
| 80 |
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
| 81 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
| 82 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
|
@@ -87,14 +100,14 @@ examples = [
|
|
| 87 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 88 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 89 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 90 |
-
|
| 91 |
]
|
| 92 |
|
| 93 |
demo = gr.ChatInterface(
|
| 94 |
fn=model_inference,
|
| 95 |
description="# **Multimodal OCR**",
|
| 96 |
examples=examples,
|
| 97 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
| 98 |
stop_btn="Stop Generation",
|
| 99 |
multimodal=True,
|
| 100 |
cache_examples=False,
|
|
|
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
import spaces
|
| 8 |
+
from qwen_vl_utils import process_vision_info
|
| 9 |
|
| 10 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
| 11 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
|
|
| 23 |
|
| 24 |
# Load images if provided
|
| 25 |
if len(files) > 1:
|
| 26 |
+
images = [load_image(image) for image in files if image.endswith(('png', 'jpg', 'jpeg'))]
|
| 27 |
+
videos = [video for video in files if video.endswith(('mp4', 'avi', 'mov'))]
|
| 28 |
elif len(files) == 1:
|
| 29 |
+
if files[0].endswith(('png', 'jpg', 'jpeg')):
|
| 30 |
+
images = [load_image(files[0])]
|
| 31 |
+
videos = []
|
| 32 |
+
else:
|
| 33 |
+
images = []
|
| 34 |
+
videos = [files[0]]
|
| 35 |
else:
|
| 36 |
images = []
|
| 37 |
+
videos = []
|
| 38 |
|
| 39 |
# Validate input
|
| 40 |
+
if text == "" and not images and not videos:
|
| 41 |
+
gr.Error("Please input a query and optionally image(s) or video(s).")
|
| 42 |
return
|
| 43 |
+
if text == "" and (images or videos):
|
| 44 |
+
gr.Error("Please input a text query along with the image(s) or video(s).")
|
| 45 |
return
|
| 46 |
|
| 47 |
# Prepare messages for the model
|
|
|
|
| 50 |
"role": "user",
|
| 51 |
"content": [
|
| 52 |
*[{"type": "image", "image": image} for image in images],
|
| 53 |
+
*[{"type": "video", "video": video} for video in videos],
|
| 54 |
{"type": "text", "text": text},
|
| 55 |
],
|
| 56 |
}
|
| 57 |
]
|
| 58 |
|
| 59 |
+
# Process vision info (images and videos)
|
| 60 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
| 61 |
+
|
| 62 |
# Apply chat template and process inputs
|
| 63 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 64 |
inputs = processor(
|
| 65 |
text=[prompt],
|
| 66 |
+
images=image_inputs,
|
| 67 |
+
videos=video_inputs,
|
| 68 |
padding=True,
|
| 69 |
+
return_tensors="pt",
|
| 70 |
+
**video_kwargs,
|
| 71 |
).to("cuda")
|
| 72 |
|
| 73 |
# Set up streamer for real-time output
|
|
|
|
| 90 |
|
| 91 |
# Example inputs
|
| 92 |
examples = [
|
|
|
|
| 93 |
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
| 94 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
| 95 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
|
|
|
| 100 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 101 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 102 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 103 |
+
[{"text": "Describe the video.", "files": ["example_videos/sample.mp4"]}],
|
| 104 |
]
|
| 105 |
|
| 106 |
demo = gr.ChatInterface(
|
| 107 |
fn=model_inference,
|
| 108 |
description="# **Multimodal OCR**",
|
| 109 |
examples=examples,
|
| 110 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
|
| 111 |
stop_btn="Stop Generation",
|
| 112 |
multimodal=True,
|
| 113 |
cache_examples=False,
|