Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import io
|
3 |
from ultralytics import YOLO
|
@@ -6,15 +84,28 @@ import numpy as np
|
|
6 |
from PIL import Image
|
7 |
import json
|
8 |
|
9 |
-
# Load
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
def detect_keypoints(image):
|
14 |
"""
|
15 |
Run YOLO inference and return keypoints data
|
|
|
|
|
|
|
16 |
"""
|
17 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Convert PIL Image to numpy array
|
19 |
if isinstance(image, Image.Image):
|
20 |
image_np = np.array(image)
|
@@ -22,13 +113,13 @@ def detect_keypoints(image):
|
|
22 |
else:
|
23 |
image_cv2 = image
|
24 |
|
25 |
-
# Run inference
|
26 |
results = model.predict(
|
27 |
source=image_cv2,
|
28 |
conf=0.05,
|
29 |
iou=0.7,
|
30 |
-
max_det=
|
31 |
-
imgsz=
|
32 |
device='cpu',
|
33 |
verbose=False
|
34 |
)
|
@@ -40,35 +131,54 @@ def detect_keypoints(image):
|
|
40 |
kpts = result.keypoints.xy.cpu().numpy()
|
41 |
conf = result.keypoints.conf.cpu().numpy()
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
keypoints_data.append({
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"y": float(y),
|
51 |
-
"confidence": float(confidence)
|
52 |
})
|
53 |
|
54 |
return {
|
55 |
"success": True,
|
|
|
56 |
"keypoints": keypoints_data,
|
57 |
"image_width": image_cv2.shape[1],
|
58 |
"image_height": image_cv2.shape[0],
|
59 |
-
"
|
|
|
60 |
}
|
61 |
|
62 |
except Exception as e:
|
63 |
-
return {"success": False, "error": str(e)}
|
64 |
|
65 |
-
# Create Gradio interface with
|
66 |
iface = gr.Interface(
|
67 |
fn=detect_keypoints,
|
68 |
-
inputs=
|
|
|
|
|
|
|
69 |
outputs=gr.JSON(),
|
70 |
title="YOLO Keypoint Detection",
|
71 |
-
description="Upload an image to detect keypoints using custom YOLO model",
|
72 |
api_name="predict" # This enables API access at /api/predict
|
73 |
)
|
74 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import io
|
3 |
+
# from ultralytics import YOLO
|
4 |
+
# import cv2
|
5 |
+
# import numpy as np
|
6 |
+
# from PIL import Image
|
7 |
+
# import json
|
8 |
+
|
9 |
+
# # Load your custom YOLO model
|
10 |
+
# model = YOLO("fentanyl_oft.pt")
|
11 |
+
# # model = YOLO("avatar_ckpt.pt")
|
12 |
+
|
13 |
+
# def detect_keypoints(image):
|
14 |
+
# """
|
15 |
+
# Run YOLO inference and return keypoints data
|
16 |
+
# """
|
17 |
+
# try:
|
18 |
+
# # Convert PIL Image to numpy array
|
19 |
+
# if isinstance(image, Image.Image):
|
20 |
+
# image_np = np.array(image)
|
21 |
+
# image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
22 |
+
# else:
|
23 |
+
# image_cv2 = image
|
24 |
+
|
25 |
+
# # Run inference
|
26 |
+
# results = model.predict(
|
27 |
+
# source=image_cv2,
|
28 |
+
# conf=0.05,
|
29 |
+
# iou=0.7,
|
30 |
+
# max_det=1,
|
31 |
+
# imgsz=1440,
|
32 |
+
# device='cpu',
|
33 |
+
# verbose=False
|
34 |
+
# )
|
35 |
+
|
36 |
+
# keypoints_data = []
|
37 |
+
# if results and len(results) > 0:
|
38 |
+
# result = results[0]
|
39 |
+
# if result.keypoints is not None:
|
40 |
+
# kpts = result.keypoints.xy.cpu().numpy()
|
41 |
+
# conf = result.keypoints.conf.cpu().numpy()
|
42 |
+
|
43 |
+
# for i in range(kpts.shape[1]):
|
44 |
+
# if i < len(kpts[0]):
|
45 |
+
# x, y = kpts[0][i]
|
46 |
+
# confidence = conf[0][i] if i < len(conf[0]) else 0.0
|
47 |
+
# keypoints_data.append({
|
48 |
+
# "id": i,
|
49 |
+
# "x": float(x),
|
50 |
+
# "y": float(y),
|
51 |
+
# "confidence": float(confidence)
|
52 |
+
# })
|
53 |
+
|
54 |
+
# return {
|
55 |
+
# "success": True,
|
56 |
+
# "keypoints": keypoints_data,
|
57 |
+
# "image_width": image_cv2.shape[1],
|
58 |
+
# "image_height": image_cv2.shape[0],
|
59 |
+
# "num_keypoints": len(keypoints_data)
|
60 |
+
# }
|
61 |
+
|
62 |
+
# except Exception as e:
|
63 |
+
# return {"success": False, "error": str(e)}
|
64 |
+
|
65 |
+
# # Create Gradio interface with API access enabled
|
66 |
+
# iface = gr.Interface(
|
67 |
+
# fn=detect_keypoints,
|
68 |
+
# inputs=gr.Image(type="pil"),
|
69 |
+
# outputs=gr.JSON(),
|
70 |
+
# title="YOLO Keypoint Detection",
|
71 |
+
# description="Upload an image to detect keypoints using custom YOLO model",
|
72 |
+
# api_name="predict" # This enables API access at /api/predict
|
73 |
+
# )
|
74 |
+
|
75 |
+
# # Launch with API enabled
|
76 |
+
# if __name__ == "__main__":
|
77 |
+
# iface.launch(share=False)
|
78 |
+
|
79 |
import gradio as gr
|
80 |
import io
|
81 |
from ultralytics import YOLO
|
|
|
84 |
from PIL import Image
|
85 |
import json
|
86 |
|
87 |
+
# Load both models
|
88 |
+
single_animal_model = YOLO("fentanyl_oft.pt") # Single animal model
|
89 |
+
multi_animal_model = YOLO("avatar_ckpt.pt") # Multi-animal model
|
90 |
|
91 |
+
def detect_keypoints(image, mode="single"):
|
92 |
"""
|
93 |
Run YOLO inference and return keypoints data
|
94 |
+
Args:
|
95 |
+
image: PIL Image
|
96 |
+
mode: "single" or "multi" to determine which model to use
|
97 |
"""
|
98 |
try:
|
99 |
+
# Select model and parameters based on mode
|
100 |
+
if mode == "multi":
|
101 |
+
model = multi_animal_model
|
102 |
+
imgsz = 1504
|
103 |
+
max_det = 5
|
104 |
+
else: # default to single
|
105 |
+
model = single_animal_model
|
106 |
+
imgsz = 1440
|
107 |
+
max_det = 1
|
108 |
+
|
109 |
# Convert PIL Image to numpy array
|
110 |
if isinstance(image, Image.Image):
|
111 |
image_np = np.array(image)
|
|
|
113 |
else:
|
114 |
image_cv2 = image
|
115 |
|
116 |
+
# Run inference with mode-specific parameters
|
117 |
results = model.predict(
|
118 |
source=image_cv2,
|
119 |
conf=0.05,
|
120 |
iou=0.7,
|
121 |
+
max_det=max_det,
|
122 |
+
imgsz=imgsz,
|
123 |
device='cpu',
|
124 |
verbose=False
|
125 |
)
|
|
|
131 |
kpts = result.keypoints.xy.cpu().numpy()
|
132 |
conf = result.keypoints.conf.cpu().numpy()
|
133 |
|
134 |
+
# Handle multiple detections (for multi-animal mode)
|
135 |
+
for detection_idx in range(kpts.shape[0]):
|
136 |
+
detection_keypoints = []
|
137 |
+
for i in range(kpts.shape[1]):
|
138 |
+
if i < len(kpts[detection_idx]):
|
139 |
+
x, y = kpts[detection_idx][i]
|
140 |
+
confidence = conf[detection_idx][i] if i < len(conf[detection_idx]) else 0.0
|
141 |
+
detection_keypoints.append({
|
142 |
+
"id": i,
|
143 |
+
"x": float(x),
|
144 |
+
"y": float(y),
|
145 |
+
"confidence": float(confidence)
|
146 |
+
})
|
147 |
+
|
148 |
+
# For single animal mode, flatten the structure
|
149 |
+
if mode == "single":
|
150 |
+
keypoints_data = detection_keypoints
|
151 |
+
break # Only take first detection
|
152 |
+
else:
|
153 |
+
# For multi-animal mode, keep detection structure
|
154 |
keypoints_data.append({
|
155 |
+
"detection_id": detection_idx,
|
156 |
+
"keypoints": detection_keypoints
|
|
|
|
|
157 |
})
|
158 |
|
159 |
return {
|
160 |
"success": True,
|
161 |
+
"mode": mode,
|
162 |
"keypoints": keypoints_data,
|
163 |
"image_width": image_cv2.shape[1],
|
164 |
"image_height": image_cv2.shape[0],
|
165 |
+
"num_detections": len(keypoints_data) if mode == "multi" else (1 if keypoints_data else 0),
|
166 |
+
"num_keypoints": len(keypoints_data) if mode == "single" else sum(len(det["keypoints"]) for det in keypoints_data) if mode == "multi" else 0
|
167 |
}
|
168 |
|
169 |
except Exception as e:
|
170 |
+
return {"success": False, "error": str(e), "mode": mode}
|
171 |
|
172 |
+
# Create Gradio interface with mode parameter
|
173 |
iface = gr.Interface(
|
174 |
fn=detect_keypoints,
|
175 |
+
inputs=[
|
176 |
+
gr.Image(type="pil"),
|
177 |
+
gr.Dropdown(choices=["single", "multi"], value="single", label="Detection Mode")
|
178 |
+
],
|
179 |
outputs=gr.JSON(),
|
180 |
title="YOLO Keypoint Detection",
|
181 |
+
description="Upload an image to detect keypoints using custom YOLO model. Choose single or multi-animal mode.",
|
182 |
api_name="predict" # This enables API access at /api/predict
|
183 |
)
|
184 |
|