File size: 10,084 Bytes
7672fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!/usr/bin/env python3
"""
Byte Pair Encoding Tokenizer for Indian Languages
A simple implementation of BPE tokenizer with Marathi-specific preprocessing.
Author: Shilpaj Bhalerao
Date: 2025-01-05
"""
# Standard Library Imports
import re

# Third Party Imports
from tqdm import tqdm


class BPETokenizer:
    """
    Byte Pair Encoding Tokenizer
    
    :param vocab_size (int): Size of final vocabulary (including base bytes)
    :param merges (dict): Dictionary of merge rules
    :param vocab (dict): Dictionary mapping token IDs to their byte sequences
    :param inverse_vocab (dict): Dictionary mapping byte sequences to token IDs
    """
    
    def __init__(self, vocab_size=1000, use_regex=False):
        """
        Initialize the tokenizer with desired vocabulary size.
        """
        self.vocab_size = vocab_size
        self.merges = {}
        self.len_of_ids = 0
        self.len_raw_bytes = 0
        self.vocab = {idx: bytes([idx]) for idx in range(256)}
        self.inverse_vocab = {bytes([idx]): idx for idx in range(256)}
        self.use_regex = use_regex
        
        # Marathi tokenization regex pattern
        self.marathi_regex = re.compile(
            r"([\u0900-\u094F\u0951-\u097F]+|"           # Marathi words and ligatures
            r"[\u0966-\u096F]+|"                         # Marathi numerals (०-९)
            r"\d+(?:\s[\u0900-\u097F]+)?|"              # Arabic numerals with Marathi context
            r"#[\w\u0900-\u097F]+|"                     # Hashtags
            r"[\w\u0900-\u097F]+[''][\w\u0900-\u097F]+|" # Compound words with apostrophes
            r"[\w\u0900-\u097F]+(?:-[\w\u0900-\u097F]+)*|" # Hyphenated words
            r"[\w\u0900-\u097F]+\.[\w\u0900-\u097F]*|"  # Abbreviations
            r'\"[^\"]+\"|\'[^\']+\'|'                   # Quoted text
            r"[\u0964\u0965.!?…]|"                      # Marathi punctuation
            r"[^\s\u0900-\u097F]+)"                     # Non-Marathi symbols
        )
    
    def preprocess(self, text: str) -> str:
        """
        Preprocess Marathi text before tokenization.
        
        :param text: Input Marathi text
        :return: Preprocessed text with tokens separated by spaces
        """
        # Find all tokens using the Marathi regex
        tokens = self.marathi_regex.findall(text)
        
        # Join tokens with spaces
        processed_text = ' '.join(tokens)
        
        # Normalize whitespace
        processed_text = ' '.join(processed_text.split())
        
        return processed_text
    
    def _get_stats(self, ids: list[int]) -> dict[tuple[int, int], int]:
        """
        Count frequency of adjacent pairs in sequence.
        
        :param ids: list of integers
        :return: dictionary of pairs and their frequencies
        """
        counts = {}
        for pair in zip(ids, ids[1:]):
            counts[pair] = counts.get(pair, 0) + 1
        return counts
    
    def _merge(self, ids: list[int], pair: tuple[int, int], idx: int) -> list[int]:
        """
        Replace all occurrences of pair with new token idx.
        
        :param ids: list of integers
        :param pair: tuple of integers
        :param idx: integer
        :return: list of integers
        """
        newids = []
        i = 0
        while i < len(ids):
            if i < len(ids) - 1 and ids[i] == pair[0] and ids[i+1] == pair[1]:
                newids.append(idx)
                i += 2
            else:
                newids.append(ids[i])
                i += 1
        return newids
    
    def train(self, text: str):
        """
        Train the BPE tokenizer on the given text.
        :param text: Input text to train on
        """
        print("Training BPE tokenizer...")

        # Preprocess text first
        if self.use_regex:
            text = self.preprocess(text)
        
        # Convert text to bytes and get initial tokens
        raw_bytes = text.encode("utf-8")
        raw_bytes = list(map(int, raw_bytes))  # convert to integers
        self.len_raw_bytes = len(raw_bytes)
        
        # Calculate number of merges needed
        num_merges = self.vocab_size - 256
        ids = list(raw_bytes)  # copy so we don't destroy the original list
        
        # Perform merges
        for i in tqdm(range(num_merges)):
            stats = self._get_stats(ids)
            if not stats:
                break
                
            # Find most frequent pair
            pair = max(stats, key=stats.get)
            idx = 256 + i
            
            # Perform the merge
            ids = self._merge(ids, pair, idx)
            self.len_of_ids = len(ids)
            self.merges[pair] = idx
            
            # Update vocabulary
            new_token = self.vocab[pair[0]] + self.vocab[pair[1]]
            self.vocab[idx] = new_token
            self.inverse_vocab[new_token] = idx
    
    def encode(self, text: str) -> list[int]:
        """
        Encode text into token IDs.
        
        :param text: Text to encode
        :return: List of token IDs
        """
        # Preprocess if needed
        if self.use_regex:
            text = self.preprocess(text)
        
        # Convert text to list of integers
        tokens = list(text.encode("utf-8"))
        while len(tokens) >= 2:
            stats = self._get_stats(tokens)
            pair = min(stats, key=lambda p: self.merges.get(p, float("inf")))
            if pair not in self.merges:
                break # nothing else can be merged
            idx = self.merges[pair]
            tokens = self._merge(tokens, pair, idx)
        return tokens
    
    def decode(self, ids: list[int]) -> str:
        """
        Decode token IDs back to text.
        
        :param ids: List of token IDs
        :return: Decoded text
        """
        tokens = b"".join(self.vocab[idx] for idx in ids)
        return tokens.decode("utf-8", errors="replace")
    
    def token_to_text(self, token_id: int) -> str:
        """
        Convert a single token ID to its text representation.
        
        :param token_id: Token ID
        :return: Text representation of the token
        """
        return self.vocab[token_id].decode("utf-8", errors="replace")
    
    def save(self, path: str):
        """
        Save tokenizer state to file.
        
        :param path: Path to save the file
        """
        import json
        state = {
            'vocab_size': self.vocab_size,
            'merges': list(self.merges.items()),  # Convert to list of tuples
            'vocab': {k: list(v) for k, v in self.vocab.items()}  # Convert bytes to lists
        }
        with open(path, 'w') as f:
            json.dump(state, f)
    
    @classmethod
    def load(cls, path: str):
        """
        Load tokenizer state from file.
        
        :param path: Path to load the file
        :return: Loaded tokenizer
        """
        import json
        with open(path, 'r') as f:
            state = json.load(f)
        
        tokenizer = cls(vocab_size=state['vocab_size'])
        # Convert lists back to tuples for the merge pairs
        tokenizer.merges = {tuple(k): v for k, v in state['merges']}
        tokenizer.vocab = {int(k): bytes(v) for k, v in state['vocab'].items()}
        tokenizer.inverse_vocab = {v: k for k, v in tokenizer.vocab.items()}
        return tokenizer
    
    def get_vocab_size(self) -> int:
        """
        Get the size of the vocabulary.
        
        :return: Size of the vocabulary
        """
        return len(self.vocab)
    
    def get_compression_ratio(self, text: str) -> float:
        """
        Get the compression ratio of the text.
        
        :param text: Input text
        :return: Compression ratio (original_length / encoded_length)
        """
        # Preprocess if needed
        if self.use_regex:
            text = self.preprocess(text)
        
        return round(self.len_raw_bytes / self.len_of_ids, 4)

    def get_token_length(self, text: str) -> int:
        """
        Get the length of the tokenized text.
        
        :param text: Input text
        :return: Length of the tokenized text
        """
        return self.len_raw_bytes
    
    def get_ids_length(self, text: str) -> int:
        """
        Get the length of the tokenized text.
        
        :param text: Input text
        :return: Length of the tokenized text
        """
        return self.len_of_ids

    def is_encoded_equals_decoded(self, text: str) -> bool:
        """
        Check if encoding and decoding are consistent.
        
        :param text: Input text
        :return: True if consistent, False otherwise
        """
        encoded = self.encode(text)
        decoded = self.decode(encoded)
        return text == decoded


if __name__ == "__main__":

    # Read text from file
    with open("dataset.txt", "r") as file:
        text = file.read()

    # Initialize and train
    tokenizer = BPETokenizer(vocab_size=3000)
    tokenizer.train(text)

    # Save and load
    tokenizer.save("tokenizer.json")
    loaded_tokenizer = BPETokenizer.load("tokenizer.json")

    # Encode and decode
    encoded = tokenizer.encode("या पुतळ्याच्या डोक्यावर अज्ञातांनी चप्पल ठेवल्याचे आढळून आले आहे.")
    decoded = loaded_tokenizer.decode(encoded)

    # Check consistency
    print("Is encoded equals to loaded decoded? ", decoded == "या पुतळ्याच्या डोक्यावर अज्ञातांनी चप्पल ठेवल्याचे आढळून आले आहे.")

    # Print vocab size
    print(f"Vocab size: {tokenizer.get_vocab_size()}")

    # Print token length
    print(f"Token length: {tokenizer.get_token_length(text)}")

    # Print ids length
    print(f"Ids length: {tokenizer.get_ids_length(text)}")

    # Print compression ratio
    print(f"Compression ratio: {tokenizer.get_compression_ratio(text)}X")