import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import numpy as np
import gzip
import os
from pathlib import Path
from datetime import datetime
import urllib.request
import shutil
from tqdm import tqdm
import asyncio
from fastapi import WebSocket
import json
from scripts.model import Net

class TrainingConfig:
    def __init__(self, params_dict):
        self.block1 = params_dict['block1']
        self.block2 = params_dict['block2']
        self.block3 = params_dict['block3']
        self.optimizer = params_dict['optimizer']
        self.batch_size = params_dict['batch_size']
        self.epochs = params_dict['epochs']

def generate_model_filename(config, model_type="single"):
    """Generate a filename based on model configuration
    model_type can be "single", "model_1", or "model_2"
    """
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    arch = f"{config.block1}_{config.block2}_{config.block3}"
    opt = config.optimizer.lower()
    batch = str(config.batch_size)
    
    return f"{model_type}_arch_{arch}_opt_{opt}_batch_{batch}_{timestamp}.pth"

def download_and_extract_mnist_data():
    """Download and extract MNIST dataset from a reliable mirror"""
    base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
    files = {
        "train_images": "train-images-idx3-ubyte.gz",
        "train_labels": "train-labels-idx1-ubyte.gz",
        "test_images": "t10k-images-idx3-ubyte.gz",
        "test_labels": "t10k-labels-idx1-ubyte.gz"
    }
    
    data_dir = Path("data/MNIST/raw")
    data_dir.mkdir(parents=True, exist_ok=True)
    
    for file_name in files.values():
        gz_file_path = data_dir / file_name
        extracted_file_path = data_dir / file_name.replace('.gz', '')

        # If the extracted file exists, skip downloading
        if extracted_file_path.exists():
            print(f"{extracted_file_path} already exists, skipping download.")
            continue

        # Download the file
        print(f"Downloading {file_name}...")
        url = base_url + file_name
        try:
            urllib.request.urlretrieve(url, gz_file_path)
            print(f"Successfully downloaded {file_name}")
        except Exception as e:
            print(f"Failed to download {file_name}: {e}")
            raise Exception(f"Could not download {file_name}")

        # Extract the files
        try:
            print(f"Extracting {file_name}...")
            with gzip.open(gz_file_path, 'rb') as f_in:
                with open(extracted_file_path, 'wb') as f_out:
                    shutil.copyfileobj(f_in, f_out)
            print(f"Successfully extracted {file_name}")
        except Exception as e:
            print(f"Failed to extract {file_name}: {e}")
            raise Exception(f"Could not extract {file_name}")

def load_mnist_images(filename):
    with open(filename, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    return data.reshape(-1, 1, 28, 28).astype(np.float32) / 255.0

def load_mnist_labels(filename):
    with open(filename, 'rb') as f:
        return np.frombuffer(f.read(), np.uint8, offset=8)

class CustomMNISTDataset(Dataset):
    def __init__(self, images_path, labels_path, transform=None):
        self.images = load_mnist_images(images_path)
        self.labels = load_mnist_labels(labels_path)
        self.transform = transform

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        image = torch.FloatTensor(self.images[idx])
        label = int(self.labels[idx])
        
        if self.transform:
            image = self.transform(image)
            
        return image, label

def validate(model, test_loader, criterion, device):
    """Modified validate function to handle validation properly"""
    model.eval()
    val_loss = 0
    correct = 0
    total = 0
    num_batches = 0

    with torch.no_grad():  # Important: no gradient computation in validation
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            val_loss += criterion(output, target).item()  # Don't scale by batch size
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            num_batches += 1

    # Average the loss by number of batches and accuracy by total samples
    val_loss = val_loss / num_batches  # Average loss across batches
    val_acc = 100. * correct / total
    
    return val_loss, val_acc

async def train(model, config, websocket=None, model_type="single"):
    print("\nStarting training...")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    model = model.to(device)

    # Create data directory if it doesn't exist
    data_dir = Path("data")
    data_dir.mkdir(exist_ok=True)

    # Ensure data is downloaded and extracted
    print("Preparing dataset...")
    download_and_extract_mnist_data()

    # Paths to the extracted files
    train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
    train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
    test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
    test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"

    # Data loading
    transform = transforms.Compose([
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
    test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)

    print(f"Dataset loaded. Training samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")

    print("\nTraining Configuration:")
    print(f"Epochs: {config.epochs}")
    print(f"Optimizer: {config.optimizer}")
    print(f"Batch Size: {config.batch_size}")
    print(f"Network Architecture: {config.block1}-{config.block2}-{config.block3}")

    # Print model parameters
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\nModel Parameters:")
    print(f"Total parameters: {total_params:,}")
    print(f"Trainable parameters: {trainable_params:,}")
    print("\nStarting training loop...")

    best_val_acc = 0
    criterion = nn.CrossEntropyLoss()
    
    # Initialize optimizer based on config
    if config.optimizer.lower() == 'adam':
        optimizer = optim.Adam(model.parameters())
    else:
        optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

    # Create models directory if it doesn't exist
    models_dir = Path("scripts/training/models")
    models_dir.mkdir(parents=True, exist_ok=True)

    try:
        for epoch in range(config.epochs):
            model.train()
            total_loss = 0
            correct = 0
            total = 0
            
            progress_bar = tqdm(
                train_loader,
                desc=f"Epoch {epoch+1}/{config.epochs}",
                unit='batch',
                leave=True
            )

            for batch_idx, (data, target) in enumerate(progress_bar):
                data, target = data.to(device), target.to(device)
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()

                # Calculate batch accuracy
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()
                total += target.size(0)
                total_loss += loss.item()

                # Calculate current metrics
                current_loss = total_loss / (batch_idx + 1)
                current_acc = 100. * correct / total

                # Send training update through websocket
                if websocket:
                    try:
                        step = batch_idx + epoch * len(train_loader)
                        await websocket.send_json({
                            'type': 'training_update',
                            'data': {
                                'step': step,
                                'train_loss': current_loss,
                                'train_acc': current_acc,
                                'epoch': epoch
                            }
                        })
                    except Exception as e:
                        print(f"Error sending websocket update: {e}")

            # Validation phase
            model.eval()
            val_loss = 0
            val_correct = 0
            val_total = 0

            print("\nRunning validation...")
            with torch.no_grad():
                for data, target in test_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                    val_loss += criterion(output, target).item()
                    pred = output.argmax(dim=1, keepdim=True)
                    val_correct += pred.eq(target.view_as(pred)).sum().item()
                    val_total += target.size(0)

            val_loss /= len(test_loader)
            val_acc = 100. * val_correct / val_total

            # Print epoch results
            print(f"\nEpoch {epoch+1}/{config.epochs} Results:")
            print(f"Training Loss: {current_loss:.4f} | Training Accuracy: {current_acc:.2f}%")
            print(f"Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")

            # Send validation update through websocket
            if websocket:
                try:
                    await websocket.send_json({
                        'type': 'validation_update',
                        'data': {
                            'step': (epoch + 1) * len(train_loader),
                            'val_loss': val_loss,
                            'val_acc': val_acc
                        }
                    })
                except Exception as e:
                    print(f"Error sending websocket update: {e}")

            # Save best model with configuration in filename
            if val_acc > best_val_acc:
                best_val_acc = val_acc
                print(f"\nNew best validation accuracy: {val_acc:.2f}%")
                
                # Generate filename with configuration
                model_filename = generate_model_filename(config, model_type)
                model_path = models_dir / model_filename
                
                print(f"Saving model as: {model_filename}")
                torch.save(model.state_dict(), model_path)

    except Exception as e:
        print(f"\nError during training: {e}")
        if websocket:
            await websocket.send_json({
                'type': 'training_error',
                'data': {
                    'message': str(e)
                }
            })
        raise e

    print("\nTraining completed!")
    print(f"Best validation accuracy: {best_val_acc:.2f}%")
    
    if websocket:
        await websocket.send_json({
            'type': 'training_complete',
            'data': {
                'message': 'Training completed successfully!',
                'best_val_acc': best_val_acc
            }
        })
    return None

def initialize_datasets(batch_size):
    """Initialize and return train and test datasets with dataloaders"""
    # Ensure data is downloaded and extracted
    print("Preparing dataset...")
    download_and_extract_mnist_data()

    # Paths to the extracted files
    train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
    train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
    test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
    test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"

    # Data loading
    transform = transforms.Compose([
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
    test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    return train_dataset, test_dataset, train_loader, test_loader

async def start_comparison_training(websocket: WebSocket, parameters: dict):
    print("\n=== Starting Comparison Training ===")
    print(f"Received parameters: {json.dumps(parameters, indent=2)}")
    
    try:
        # Create models directory if it doesn't exist
        models_dir = Path("scripts/training/models")
        models_dir.mkdir(parents=True, exist_ok=True)
        
        # Validate parameters
        if not parameters.get('model_params'):
            print("Error: Missing model parameters")
            raise ValueError("Missing model parameters")
            
        if not parameters.get('dataset_params'):
            print("Error: Missing dataset parameters")
            raise ValueError("Missing dataset parameters")

        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        criterion = nn.CrossEntropyLoss()
        
        # Calculate total training samples once
        train_dataset = CustomMNISTDataset(
            "data/MNIST/raw/train-images-idx3-ubyte",
            "data/MNIST/raw/train-labels-idx1-ubyte",
            transform=transforms.Compose([transforms.Normalize((0.1307,), (0.3081,))])
        )
        total_samples = len(train_dataset)
        
        # Dictionary to store best accuracies
        best_accuracies = {}
        
        # Start training models
        for model_key, model_letter in [('model_a', 'A'), ('model_b', 'B')]:
            print(f"\n{'='*50}")
            print(f"Training Model {model_letter}")
            print(f"{'='*50}")
            
            model_params = parameters['model_params'][model_key]
            
            # Calculate iterations per epoch for this model
            batch_size = model_params['batch_size']
            iterations_per_epoch = total_samples // batch_size
            total_iterations = iterations_per_epoch * model_params['epochs']
            
            # Print configuration details
            print("\nModel Configuration:")
            print(f"Architecture: {model_params['block1']}-{model_params['block2']}-{model_params['block3']}")
            print(f"Optimizer: {model_params['optimizer']}")
            print(f"Batch Size: {model_params['batch_size']}")
            print(f"Epochs: {model_params['epochs']}")
            print(f"Iterations per epoch: {iterations_per_epoch:,}")
            print(f"Total iterations: {total_iterations:,}")
            
            try:
                # Initialize datasets with model-specific batch size
                train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
                test_dataset = CustomMNISTDataset(
                    "data/MNIST/raw/t10k-images-idx3-ubyte",
                    "data/MNIST/raw/t10k-labels-idx1-ubyte",
                    transform=transforms.Compose([transforms.Normalize((0.1307,), (0.3081,))])
                )
                test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
                
                print(f"\nDataset Information:")
                print(f"Training samples: {len(train_dataset):,}")
                print(f"Test samples: {len(test_dataset):,}")
                print(f"Steps per epoch: {len(train_loader):,}")
                
                # Initialize model and move to device
                model = Net(kernels=[
                    model_params['block1'],
                    model_params['block2'],
                    model_params['block3']
                ]).to(device)
                
                # Print model parameters
                total_params = sum(p.numel() for p in model.parameters())
                trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
                print(f"\nModel Parameters:")
                print(f"Total parameters: {total_params:,}")
                print(f"Trainable parameters: {trainable_params:,}")
                
                # Initialize optimizer
                if model_params['optimizer'].lower() == 'adam':
                    optimizer = optim.Adam(model.parameters())
                else:
                    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
                
                # Train the model
                current_iteration = 0
                best_acc = 0  # Track best accuracy for model saving
                
                for epoch in range(model_params['epochs']):
                    model.train()
                    total_loss = 0
                    correct = 0
                    total = 0
                    
                    # Create progress bar for each epoch
                    progress_bar = tqdm(
                        train_loader,
                        desc=f"Epoch {epoch+1}/{model_params['epochs']}",
                        unit='batch',
                        leave=True,
                        ncols=100
                    )
                    
                    for batch_idx, (data, target) in enumerate(progress_bar):
                        data, target = data.to(device), target.to(device)
                        optimizer.zero_grad()
                        output = model(data)
                        loss = criterion(output, target)
                        loss.backward()
                        optimizer.step()

                        # Calculate batch accuracy
                        pred = output.argmax(dim=1, keepdim=True)
                        correct += pred.eq(target.view_as(pred)).sum().item()
                        total += target.size(0)
                        total_loss += loss.item()

                        # Calculate current metrics
                        current_loss = total_loss / (batch_idx + 1)
                        current_acc = 100. * correct / total

                        # Update progress bar description
                        progress_bar.set_postfix({
                            'loss': f'{current_loss:.4f}',
                            'acc': f'{current_acc:.2f}%'
                        })

                        # Send comparison-specific training update
                        current_iteration += 1
                        await websocket.send_json({
                            'status': 'training',
                            'model': model_letter,
                            'metrics': {
                                'iteration': current_iteration,
                                'total_iterations': total_iterations,
                                'loss': current_loss,
                                'accuracy': current_acc
                            },
                            'epoch': epoch,
                            'batch_size': batch_size,
                            'iterations_per_epoch': iterations_per_epoch
                        })

                    # Print epoch summary
                    print(f"\nEpoch {epoch+1} Summary:")
                    print(f"Average Loss: {current_loss:.4f}")
                    print(f"Accuracy: {current_acc:.2f}%")

                    # Add validation phase at the end of each epoch
                    model.eval()
                    val_loss = 0
                    val_correct = 0
                    val_total = 0

                    print("\nRunning validation...")
                    with torch.no_grad():
                        for data, target in test_loader:
                            data, target = data.to(device), target.to(device)
                            output = model(data)
                            val_loss += criterion(output, target).item()
                            pred = output.argmax(dim=1, keepdim=True)
                            val_correct += pred.eq(target.view_as(pred)).sum().item()
                            val_total += target.size(0)

                    val_loss /= len(test_loader)
                    val_acc = 100. * val_correct / val_total

                    # Save model if it's the best so far
                    if val_acc > best_acc:
                        best_acc = val_acc
                        # Generate filename with configuration
                        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                        model_filename = f"{model_key}_arch_{model_params['block1']}_{model_params['block2']}_{model_params['block3']}_opt_{model_params['optimizer'].lower()}_batch_{model_params['batch_size']}_{timestamp}.pth"
                        model_path = models_dir / model_filename
                        
                        print(f"\nSaving Model {model_letter} with accuracy {val_acc:.2f}% as: {model_filename}")
                        torch.save(model.state_dict(), model_path)

                print(f"\nModel {model_letter} training completed")
                print(f"Best validation accuracy: {best_acc:.2f}%")
                
                # Save best accuracy for this model
                best_accuracies[model_key] = best_acc

            except Exception as e:
                print(f"Error training Model {model_letter}: {str(e)}")
                raise

        print("\nBoth models trained successfully")
        await websocket.send_json({
            'status': 'complete',
            'message': 'Training completed for both models',
            'model_a_acc': best_accuracies.get('model_a'),
            'model_b_acc': best_accuracies.get('model_b')
        })
            
    except Exception as e:
        error_msg = f"Error in comparison training: {str(e)}"
        print(error_msg)
        await websocket.send_json({
            'status': 'error',
            'message': error_msg
        })
    finally:
        print("=== Comparison Training Ended ===\n")