import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, kernels=[32, 64, 128]): super(Net, self).__init__() # First Convolutional Block self.conv1 = nn.Conv2d(1, kernels[0], 3, padding=1) self.bn1 = nn.BatchNorm2d(kernels[0]) # Second Convolutional Block self.conv2 = nn.Conv2d(kernels[0], kernels[1], 3, padding=1) self.bn2 = nn.BatchNorm2d(kernels[1]) # Third Convolutional Block self.conv3 = nn.Conv2d(kernels[1], kernels[2], 3, padding=1) self.bn3 = nn.BatchNorm2d(kernels[2]) self.pool = nn.MaxPool2d(2, 2) self.dropout = nn.Dropout(0.25) # Calculate the size after convolutions and pooling # Input: 28x28 -> after three pooling layers: 7x7 # Final feature map size will be kernels[2] x 7 x 7 self.fc1 = nn.Linear(kernels[2] * 7 * 7, 256) self.fc1_bn = nn.BatchNorm1d(256) self.fc2 = nn.Linear(256, 10) # Initialize weights self._initialize_weights() def forward(self, x): # First conv block x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.pool(x) # 28x28 -> 14x14 # Second conv block x = self.conv2(x) x = self.bn2(x) x = F.relu(x) x = self.pool(x) # 14x14 -> 7x7 # Third conv block x = self.conv3(x) x = self.bn3(x) x = F.relu(x) # No pooling here to maintain spatial dimensions # Flatten x = x.view(-1, self.num_flat_features(x)) x = self.dropout(x) # Fully connected layers x = self.fc1(x) x = self.fc1_bn(x) x = F.relu(x) x = self.dropout(x) x = self.fc2(x) return F.log_softmax(x, dim=1) def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): # Xavier initialization for CONV layers nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): # Xavier initialization for FC layers nn.init.xavier_uniform_(m.weight) nn.init.zeros_(m.bias)