File size: 22,403 Bytes
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
30d27e9
 
 
 
 
 
 
 
 
 
 
 
6f5f635
61f0070
 
 
 
 
 
 
 
 
 
 
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
6f5f635
 
 
f9b762f
 
 
 
 
 
 
6f5f635
 
 
61f0070
 
 
 
 
 
 
 
 
 
 
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
6f5f635
 
 
61f0070
6f5f635
30d27e9
 
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
6f5f635
 
 
61f0070
 
 
 
 
 
 
6f5f635
 
 
30d27e9
 
 
 
 
 
 
6f5f635
 
 
 
30d27e9
 
 
 
 
 
 
 
 
61f0070
30d27e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import numpy as np
import gzip
import os
from pathlib import Path
from datetime import datetime
import urllib.request
import shutil
from tqdm import tqdm
import asyncio
from fastapi import WebSocket
import json
from scripts.model import Net

class TrainingConfig:
    def __init__(self, params_dict):
        self.block1 = params_dict['block1']
        self.block2 = params_dict['block2']
        self.block3 = params_dict['block3']
        self.optimizer = params_dict['optimizer']
        self.batch_size = params_dict['batch_size']
        self.epochs = params_dict['epochs']

def generate_model_filename(config, model_type="single"):
    """Generate a filename based on model configuration
    model_type can be "single", "model_1", or "model_2"
    """
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    arch = f"{config.block1}_{config.block2}_{config.block3}"
    opt = config.optimizer.lower()
    batch = str(config.batch_size)
    
    return f"{model_type}_arch_{arch}_opt_{opt}_batch_{batch}_{timestamp}.pth"

def download_and_extract_mnist_data():
    """Download and extract MNIST dataset from a reliable mirror"""
    base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
    files = {
        "train_images": "train-images-idx3-ubyte.gz",
        "train_labels": "train-labels-idx1-ubyte.gz",
        "test_images": "t10k-images-idx3-ubyte.gz",
        "test_labels": "t10k-labels-idx1-ubyte.gz"
    }
    
    data_dir = Path("data/MNIST/raw")
    data_dir.mkdir(parents=True, exist_ok=True)
    
    for file_name in files.values():
        gz_file_path = data_dir / file_name
        extracted_file_path = data_dir / file_name.replace('.gz', '')

        # If the extracted file exists, skip downloading
        if extracted_file_path.exists():
            print(f"{extracted_file_path} already exists, skipping download.")
            continue

        # Download the file
        print(f"Downloading {file_name}...")
        url = base_url + file_name
        try:
            urllib.request.urlretrieve(url, gz_file_path)
            print(f"Successfully downloaded {file_name}")
        except Exception as e:
            print(f"Failed to download {file_name}: {e}")
            raise Exception(f"Could not download {file_name}")

        # Extract the files
        try:
            print(f"Extracting {file_name}...")
            with gzip.open(gz_file_path, 'rb') as f_in:
                with open(extracted_file_path, 'wb') as f_out:
                    shutil.copyfileobj(f_in, f_out)
            print(f"Successfully extracted {file_name}")
        except Exception as e:
            print(f"Failed to extract {file_name}: {e}")
            raise Exception(f"Could not extract {file_name}")

def load_mnist_images(filename):
    with open(filename, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    return data.reshape(-1, 1, 28, 28).astype(np.float32) / 255.0

def load_mnist_labels(filename):
    with open(filename, 'rb') as f:
        return np.frombuffer(f.read(), np.uint8, offset=8)

class CustomMNISTDataset(Dataset):
    def __init__(self, images_path, labels_path, transform=None):
        self.images = load_mnist_images(images_path)
        self.labels = load_mnist_labels(labels_path)
        self.transform = transform

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        image = torch.FloatTensor(self.images[idx])
        label = int(self.labels[idx])
        
        if self.transform:
            image = self.transform(image)
            
        return image, label

def validate(model, test_loader, criterion, device):
    """Modified validate function to handle validation properly"""
    model.eval()
    val_loss = 0
    correct = 0
    total = 0
    num_batches = 0

    with torch.no_grad():  # Important: no gradient computation in validation
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            val_loss += criterion(output, target).item()  # Don't scale by batch size
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            num_batches += 1

    # Average the loss by number of batches and accuracy by total samples
    val_loss = val_loss / num_batches  # Average loss across batches
    val_acc = 100. * correct / total
    
    return val_loss, val_acc

async def train(model, config, websocket=None, model_type="single"):
    print("\nStarting training...")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    model = model.to(device)

    # Create data directory if it doesn't exist
    data_dir = Path("data")
    data_dir.mkdir(exist_ok=True)

    # Ensure data is downloaded and extracted
    print("Preparing dataset...")
    download_and_extract_mnist_data()

    # Paths to the extracted files
    train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
    train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
    test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
    test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"

    # Data loading
    transform = transforms.Compose([
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
    test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)

    print(f"Dataset loaded. Training samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")

    print("\nTraining Configuration:")
    print(f"Epochs: {config.epochs}")
    print(f"Optimizer: {config.optimizer}")
    print(f"Batch Size: {config.batch_size}")
    print(f"Network Architecture: {config.block1}-{config.block2}-{config.block3}")

    # Print model parameters
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\nModel Parameters:")
    print(f"Total parameters: {total_params:,}")
    print(f"Trainable parameters: {trainable_params:,}")
    print("\nStarting training loop...")

    best_val_acc = 0
    criterion = nn.CrossEntropyLoss()
    
    # Initialize optimizer based on config
    if config.optimizer.lower() == 'adam':
        optimizer = optim.Adam(model.parameters())
    else:
        optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

    # Create models directory if it doesn't exist
    models_dir = Path("scripts/training/models")
    models_dir.mkdir(parents=True, exist_ok=True)

    try:
        for epoch in range(config.epochs):
            model.train()
            total_loss = 0
            correct = 0
            total = 0
            
            progress_bar = tqdm(
                train_loader,
                desc=f"Epoch {epoch+1}/{config.epochs}",
                unit='batch',
                leave=True
            )

            for batch_idx, (data, target) in enumerate(progress_bar):
                data, target = data.to(device), target.to(device)
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()

                # Calculate batch accuracy
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()
                total += target.size(0)
                total_loss += loss.item()

                # Calculate current metrics
                current_loss = total_loss / (batch_idx + 1)
                current_acc = 100. * correct / total

                # Send training update through websocket
                if websocket:
                    try:
                        step = batch_idx + epoch * len(train_loader)
                        await websocket.send_json({
                            'type': 'training_update',
                            'data': {
                                'step': step,
                                'train_loss': current_loss,
                                'train_acc': current_acc,
                                'epoch': epoch
                            }
                        })
                    except Exception as e:
                        print(f"Error sending websocket update: {e}")

            # Validation phase
            model.eval()
            val_loss = 0
            val_correct = 0
            val_total = 0

            print("\nRunning validation...")
            with torch.no_grad():
                for data, target in test_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                    val_loss += criterion(output, target).item()
                    pred = output.argmax(dim=1, keepdim=True)
                    val_correct += pred.eq(target.view_as(pred)).sum().item()
                    val_total += target.size(0)

            val_loss /= len(test_loader)
            val_acc = 100. * val_correct / val_total

            # Print epoch results
            print(f"\nEpoch {epoch+1}/{config.epochs} Results:")
            print(f"Training Loss: {current_loss:.4f} | Training Accuracy: {current_acc:.2f}%")
            print(f"Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")

            # Send validation update through websocket
            if websocket:
                try:
                    await websocket.send_json({
                        'type': 'validation_update',
                        'data': {
                            'step': (epoch + 1) * len(train_loader),
                            'val_loss': val_loss,
                            'val_acc': val_acc
                        }
                    })
                except Exception as e:
                    print(f"Error sending websocket update: {e}")

            # Save best model with configuration in filename
            if val_acc > best_val_acc:
                best_val_acc = val_acc
                print(f"\nNew best validation accuracy: {val_acc:.2f}%")
                
                # Generate filename with configuration
                model_filename = generate_model_filename(config, model_type)
                model_path = models_dir / model_filename
                
                print(f"Saving model as: {model_filename}")
                torch.save(model.state_dict(), model_path)

    except Exception as e:
        print(f"\nError during training: {e}")
        if websocket:
            await websocket.send_json({
                'type': 'training_error',
                'data': {
                    'message': str(e)
                }
            })
        raise e

    print("\nTraining completed!")
    print(f"Best validation accuracy: {best_val_acc:.2f}%")
    
    if websocket:
        await websocket.send_json({
            'type': 'training_complete',
            'data': {
                'message': 'Training completed successfully!',
                'best_val_acc': best_val_acc
            }
        })
    return None

def initialize_datasets(batch_size):
    """Initialize and return train and test datasets with dataloaders"""
    # Ensure data is downloaded and extracted
    print("Preparing dataset...")
    download_and_extract_mnist_data()

    # Paths to the extracted files
    train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
    train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
    test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
    test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"

    # Data loading
    transform = transforms.Compose([
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
    test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    return train_dataset, test_dataset, train_loader, test_loader

async def start_comparison_training(websocket: WebSocket, parameters: dict):
    print("\n=== Starting Comparison Training ===")
    print(f"Received parameters: {json.dumps(parameters, indent=2)}")
    
    try:
        # Create models directory if it doesn't exist
        models_dir = Path("scripts/training/models")
        models_dir.mkdir(parents=True, exist_ok=True)
        
        # Validate parameters
        if not parameters.get('model_params'):
            print("Error: Missing model parameters")
            raise ValueError("Missing model parameters")
            
        if not parameters.get('dataset_params'):
            print("Error: Missing dataset parameters")
            raise ValueError("Missing dataset parameters")

        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        criterion = nn.CrossEntropyLoss()
        
        # Calculate total training samples once
        train_dataset = CustomMNISTDataset(
            "data/MNIST/raw/train-images-idx3-ubyte",
            "data/MNIST/raw/train-labels-idx1-ubyte",
            transform=transforms.Compose([transforms.Normalize((0.1307,), (0.3081,))])
        )
        total_samples = len(train_dataset)
        
        # Dictionary to store best accuracies
        best_accuracies = {}
        
        # Start training models
        for model_key, model_letter in [('model_a', 'A'), ('model_b', 'B')]:
            print(f"\n{'='*50}")
            print(f"Training Model {model_letter}")
            print(f"{'='*50}")
            
            model_params = parameters['model_params'][model_key]
            
            # Calculate iterations per epoch for this model
            batch_size = model_params['batch_size']
            iterations_per_epoch = total_samples // batch_size
            total_iterations = iterations_per_epoch * model_params['epochs']
            
            # Print configuration details
            print("\nModel Configuration:")
            print(f"Architecture: {model_params['block1']}-{model_params['block2']}-{model_params['block3']}")
            print(f"Optimizer: {model_params['optimizer']}")
            print(f"Batch Size: {model_params['batch_size']}")
            print(f"Epochs: {model_params['epochs']}")
            print(f"Iterations per epoch: {iterations_per_epoch:,}")
            print(f"Total iterations: {total_iterations:,}")
            
            try:
                # Initialize datasets with model-specific batch size
                train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
                test_dataset = CustomMNISTDataset(
                    "data/MNIST/raw/t10k-images-idx3-ubyte",
                    "data/MNIST/raw/t10k-labels-idx1-ubyte",
                    transform=transforms.Compose([transforms.Normalize((0.1307,), (0.3081,))])
                )
                test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
                
                print(f"\nDataset Information:")
                print(f"Training samples: {len(train_dataset):,}")
                print(f"Test samples: {len(test_dataset):,}")
                print(f"Steps per epoch: {len(train_loader):,}")
                
                # Initialize model and move to device
                model = Net(kernels=[
                    model_params['block1'],
                    model_params['block2'],
                    model_params['block3']
                ]).to(device)
                
                # Print model parameters
                total_params = sum(p.numel() for p in model.parameters())
                trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
                print(f"\nModel Parameters:")
                print(f"Total parameters: {total_params:,}")
                print(f"Trainable parameters: {trainable_params:,}")
                
                # Initialize optimizer
                if model_params['optimizer'].lower() == 'adam':
                    optimizer = optim.Adam(model.parameters())
                else:
                    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
                
                # Train the model
                current_iteration = 0
                best_acc = 0  # Track best accuracy for model saving
                
                for epoch in range(model_params['epochs']):
                    model.train()
                    total_loss = 0
                    correct = 0
                    total = 0
                    
                    # Create progress bar for each epoch
                    progress_bar = tqdm(
                        train_loader,
                        desc=f"Epoch {epoch+1}/{model_params['epochs']}",
                        unit='batch',
                        leave=True,
                        ncols=100
                    )
                    
                    for batch_idx, (data, target) in enumerate(progress_bar):
                        data, target = data.to(device), target.to(device)
                        optimizer.zero_grad()
                        output = model(data)
                        loss = criterion(output, target)
                        loss.backward()
                        optimizer.step()

                        # Calculate batch accuracy
                        pred = output.argmax(dim=1, keepdim=True)
                        correct += pred.eq(target.view_as(pred)).sum().item()
                        total += target.size(0)
                        total_loss += loss.item()

                        # Calculate current metrics
                        current_loss = total_loss / (batch_idx + 1)
                        current_acc = 100. * correct / total

                        # Update progress bar description
                        progress_bar.set_postfix({
                            'loss': f'{current_loss:.4f}',
                            'acc': f'{current_acc:.2f}%'
                        })

                        # Send comparison-specific training update
                        current_iteration += 1
                        await websocket.send_json({
                            'status': 'training',
                            'model': model_letter,
                            'metrics': {
                                'iteration': current_iteration,
                                'total_iterations': total_iterations,
                                'loss': current_loss,
                                'accuracy': current_acc
                            },
                            'epoch': epoch,
                            'batch_size': batch_size,
                            'iterations_per_epoch': iterations_per_epoch
                        })

                    # Print epoch summary
                    print(f"\nEpoch {epoch+1} Summary:")
                    print(f"Average Loss: {current_loss:.4f}")
                    print(f"Accuracy: {current_acc:.2f}%")

                    # Add validation phase at the end of each epoch
                    model.eval()
                    val_loss = 0
                    val_correct = 0
                    val_total = 0

                    print("\nRunning validation...")
                    with torch.no_grad():
                        for data, target in test_loader:
                            data, target = data.to(device), target.to(device)
                            output = model(data)
                            val_loss += criterion(output, target).item()
                            pred = output.argmax(dim=1, keepdim=True)
                            val_correct += pred.eq(target.view_as(pred)).sum().item()
                            val_total += target.size(0)

                    val_loss /= len(test_loader)
                    val_acc = 100. * val_correct / val_total

                    # Save model if it's the best so far
                    if val_acc > best_acc:
                        best_acc = val_acc
                        # Generate filename with configuration
                        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                        model_filename = f"{model_key}_arch_{model_params['block1']}_{model_params['block2']}_{model_params['block3']}_opt_{model_params['optimizer'].lower()}_batch_{model_params['batch_size']}_{timestamp}.pth"
                        model_path = models_dir / model_filename
                        
                        print(f"\nSaving Model {model_letter} with accuracy {val_acc:.2f}% as: {model_filename}")
                        torch.save(model.state_dict(), model_path)

                print(f"\nModel {model_letter} training completed")
                print(f"Best validation accuracy: {best_acc:.2f}%")
                
                # Save best accuracy for this model
                best_accuracies[model_key] = best_acc

            except Exception as e:
                print(f"Error training Model {model_letter}: {str(e)}")
                raise

        print("\nBoth models trained successfully")
        await websocket.send_json({
            'status': 'complete',
            'message': 'Training completed for both models',
            'model_a_acc': best_accuracies.get('model_a'),
            'model_b_acc': best_accuracies.get('model_b')
        })
            
    except Exception as e:
        error_msg = f"Error in comparison training: {str(e)}"
        print(error_msg)
        await websocket.send_json({
            'status': 'error',
            'message': error_msg
        })
    finally:
        print("=== Comparison Training Ended ===\n")