File size: 12,156 Bytes
0d84fb8
 
 
 
 
 
 
 
 
30d27e9
0d84fb8
 
61f0070
30d27e9
 
4fd7030
61f0070
 
0d84fb8
 
 
244431c
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d27e9
0d84fb8
30d27e9
0d84fb8
 
 
 
 
 
 
 
 
30d27e9
 
 
 
 
 
 
 
 
0d84fb8
 
 
 
61f0070
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
30d27e9
 
 
 
 
 
0d84fb8
 
 
61f0070
30d27e9
 
 
61f0070
30d27e9
 
 
 
61f0070
30d27e9
 
 
 
 
 
 
 
 
61f0070
30d27e9
 
 
61f0070
30d27e9
 
61f0070
30d27e9
 
 
 
 
 
 
 
 
 
 
61f0070
30d27e9
61f0070
30d27e9
 
61f0070
30d27e9
 
 
61f0070
 
30d27e9
 
61f0070
30d27e9
61f0070
30d27e9
61f0070
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d84fb8
 
 
 
 
 
 
 
 
 
61f0070
 
 
 
 
0d84fb8
61f0070
 
 
 
 
 
 
 
 
 
 
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd7030
 
 
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
61f0070
 
 
 
 
 
 
 
 
0d84fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from fastapi import FastAPI, Request, HTTPException, WebSocket, WebSocketDisconnect
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from typing import List, Optional
import uvicorn
import torch
from scripts.model import Net
from scripts.training.train import train, start_comparison_training
from pathlib import Path
from fastapi import BackgroundTasks
import warnings
import asyncio
import json
import numpy as np

warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.transforms")

app = FastAPI()

# Mount static files with a name parameter
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")

# Model configurations
class TrainingConfig(BaseModel):
    block1: int
    block2: int
    block3: int
    optimizer: str
    batch_size: int
    epochs: int = 1

class ComparisonConfig(BaseModel):
    model1: TrainingConfig
    model2: TrainingConfig

def get_available_models():
    models_dir = Path("scripts/training/models")
    if not models_dir.exists():
        models_dir.mkdir(exist_ok=True, parents=True)
    return [f.stem for f in models_dir.glob("*.pth")]

# Add a global variable to store training task
training_task = None

@app.get("/", response_class=HTMLResponse)
async def home(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.get("/train", response_class=HTMLResponse)
async def train_page(request: Request):
    return templates.TemplateResponse("train.html", {"request": request})

@app.get("/inference", response_class=HTMLResponse)
async def inference_page(request: Request):
    available_models = get_available_models()
    return templates.TemplateResponse(
        "inference.html", 
        {
            "request": request,
            "available_models": available_models
        }
    )

@app.post("/train")
async def train_model(config: TrainingConfig, background_tasks: BackgroundTasks):
    try:
        # Create model instance with the configuration
        model = Net(
            kernels=[config.block1, config.block2, config.block3]
        )
        
        # Store training configuration
        training_config = {
            "optimizer": config.optimizer,
            "batch_size": config.batch_size
        }
        
        return {"status": "success", "message": "Training configuration received"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.websocket("/ws/train")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    try:
        print("WebSocket connection accepted for single model training")
        config_data = await websocket.receive_json()
        print(f"Received config data: {config_data}")
        
        model = Net(
            kernels=[
                config_data['block1'],
                config_data['block2'],
                config_data['block3']
            ]
        )
        
        # Create TrainingConfig object for single model using **kwargs
        config = TrainingConfig(**{
            'block1': config_data['block1'],
            'block2': config_data['block2'],
            'block3': config_data['block3'],
            'optimizer': config_data['optimizer'],
            'batch_size': config_data['batch_size'],
            'epochs': config_data['epochs']
        })
        
        print(f"Starting training with config: {config_data}")
        
        try:
            await train(model, config, websocket, model_type="single")
        except Exception as e:
            print(f"Training error: {str(e)}")
            await websocket.send_json({
                "type": "training_error",
                "data": {
                    "message": f"Training failed: {str(e)}"
                }
            })
            
    except WebSocketDisconnect:
        print("WebSocket disconnected")
    except Exception as e:
        print(f"WebSocket error: {str(e)}")
        await websocket.send_json({
            "type": "training_error",
            "data": {
                "message": f"WebSocket error: {str(e)}"
            }
        })
    finally:
        print("WebSocket connection closed")

@app.websocket("/ws/compare")
async def websocket_endpoint(websocket: WebSocket):
    print("\n=== New WebSocket Connection ===")
    print("New WebSocket connection attempt")
    try:
        await websocket.accept()
        print("WebSocket connection accepted")
        
        print("Waiting for initial message...")
        data = await websocket.receive_json()
        print(f"Received initial message: {data}")
        
        if 'action' not in data:
            print("Error: Missing 'action' in message")
            await websocket.send_json({
                'status': 'error',
                'message': 'Missing action in request'
            })
            return
            
        if data['action'] == 'start_training':
            if 'parameters' not in data:
                print("Error: Missing 'parameters' in message")
                await websocket.send_json({
                    'status': 'error',
                    'message': 'Missing parameters in request'
                })
                return
                
            print("Starting training task")
            try:
                training_task = asyncio.create_task(start_comparison_training(
                    websocket,
                    data['parameters']
                ))
                print("Training task created, awaiting completion...")
                await training_task
                print("Training task completed")
            except Exception as e:
                print(f"Error during training task: {str(e)}")
                await websocket.send_json({
                    'status': 'error',
                    'message': f'Training error: {str(e)}'
                })
        else:
            print(f"Unknown action received: {data['action']}")
            
    except WebSocketDisconnect:
        print("WebSocket disconnected")
    except json.JSONDecodeError as e:
        print(f"JSON decode error: {str(e)}")
    except Exception as e:
        print(f"Unexpected error in websocket handler: {str(e)}")
    finally:
        print("=== WebSocket Connection Closed ===\n")

# @app.post("/api/train_single")
# async def train_single_model(config: TrainingConfig):
#     try:
#         model = Net(kernels=config.kernels)
#         # Start training without passing the websocket
#         await train(model, config)
#         return {"status": "success"}
#     except Exception as e:
#         # Log the error for debugging
#         print(f"Error during training: {str(e)}")
#         # Return a JSON response with the error message
#         raise HTTPException(status_code=500, detail=f"Error during training: {str(e)}")

@app.post("/api/train_compare")
async def train_compare_models(config: ComparisonConfig):
    try:
        # Train both models
        model1 = Net(kernels=config.model1.kernels)
        model2 = Net(kernels=config.model2.kernels)
        
        results1 = train(model1, config.model1)
        results2 = train(model2, config.model2)
        
        return {
            "status": "success",
            "model1_results": results1,
            "model2_results": results2
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

def parse_model_filename(filename):
    """Extract configuration from model filename"""
    # Example filename: single_arch_32_64_128_opt_adam_batch_64_20240322_123456.pth
    try:
        parts = filename.split('_')
        # Find architecture values
        arch_index = parts.index('arch')
        block1 = int(parts[arch_index + 1])
        block2 = int(parts[arch_index + 2])
        block3 = int(parts[arch_index + 3])
        
        # Find optimizer
        opt_index = parts.index('opt')
        optimizer = parts[opt_index + 1]
        
        # Find batch size
        batch_index = parts.index('batch')
        batch_size = int(parts[batch_index + 1])
        
        return {
            'block1': block1,
            'block2': block2,
            'block3': block3,
            'optimizer': optimizer,
            'batch_size': batch_size
        }
    except Exception as e:
        print(f"Error parsing model filename: {e}")
        return None

@app.post("/api/inference")
async def perform_inference(data: dict):
    try:
        model_name = data.get("model_name")
        if not model_name:
            raise HTTPException(status_code=400, detail="No model selected")
            
        model_path = Path("scripts/training/models") / f"{model_name}.pth"
        if not model_path.exists():
            raise HTTPException(status_code=404, detail=f"Model not found: {model_path}")
        
        # Parse model configuration from filename
        config = parse_model_filename(model_name)
        if not config:
            raise HTTPException(status_code=500, detail="Could not parse model configuration")
            
        # Create model with the correct configuration
        model = Net(
            kernels=[
                config['block1'],
                config['block2'],
                config['block3']
            ]
        )
        
        # Load model weights
        model.load_state_dict(torch.load(str(model_path), map_location=torch.device('cpu'), weights_only=True))
        model.eval()
        
        # Process image data and get prediction
        image_data = data.get("image")
        if not image_data:
            raise HTTPException(status_code=400, detail="No image data provided")
            
        # Convert base64 image to tensor and process
        try:
            # Remove the data URL prefix
            image_data = image_data.split(',')[1]
            import base64
            import io
            from PIL import Image
            import torchvision.transforms as transforms
            
            # Decode base64 to image
            image_bytes = base64.b64decode(image_data)
            image = Image.open(io.BytesIO(image_bytes)).convert('L')  # Convert to grayscale
            
            # Resize using PIL directly with LANCZOS
            image = image.resize((28, 28), Image.LANCZOS)
            
            # Invert the image (subtract from 255 to invert grayscale)
            image = Image.fromarray(255 - np.array(image))
            
            # Preprocess image
            transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
            ])
            
            # Convert to tensor and add batch dimension
            image_tensor = transform(image).unsqueeze(0)
            
            # Get prediction
            with torch.no_grad():
                output = model(image_tensor)
                prediction = output.argmax(dim=1).item()
            
            # Add configuration info to response
            return {
                "prediction": prediction,
                "model_config": {
                    "architecture": f"{config['block1']}-{config['block2']}-{config['block3']}",
                    "optimizer": config['optimizer'],
                    "batch_size": config['batch_size']
                }
            }
            
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/train/single", response_class=HTMLResponse)
async def train_single_page(request: Request):
    return templates.TemplateResponse("train_single.html", {"request": request})

@app.get("/train/compare", response_class=HTMLResponse)
async def train_compare_page(request: Request):
    return templates.TemplateResponse("train_compare.html", {"request": request})

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)