Spaces:
Sleeping
Sleeping
Feat: Files for application
Browse files- .gitattributes +1 -0
- README.md +16 -13
- app.py +115 -0
- assets/examples/bird.jpg +0 -0
- assets/examples/car.jpg +0 -0
- assets/examples/cat.jpg +0 -0
- assets/examples/dog.jpg +0 -0
- assets/examples/frog.jpg +0 -0
- assets/examples/horse.jpg +0 -0
- assets/examples/plane.jpg +3 -0
- assets/examples/shark-plane.jpg +0 -0
- assets/examples/ship.png +0 -0
- assets/examples/truck.jpg +0 -0
- inference.py +102 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/examples/plane.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
1 |
+
# ResNet50 trained on ImageNet-1K
|
2 |
+
|
3 |
+
Model trained on ImageNet-1K with 1000 classes.
|
4 |
+
|
5 |
+
## Model
|
6 |
+
|
7 |
+
`resnet50_imagenet1k.pth`
|
8 |
+
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
|
12 |
+
1. Download the model from the link above.
|
13 |
+
2. Use the model in your project.
|
14 |
+
|
15 |
+
```python
|
16 |
+
```
|
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Application for ResNet50 trained on ImageNet-1K.
|
4 |
+
"""
|
5 |
+
# Standard Library Imports
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Third Party Imports
|
9 |
+
import torch
|
10 |
+
from torchvision import models
|
11 |
+
|
12 |
+
# Local Imports
|
13 |
+
from inference import inference
|
14 |
+
|
15 |
+
|
16 |
+
def load_model(model_path: str):
|
17 |
+
"""
|
18 |
+
Load the model.
|
19 |
+
"""
|
20 |
+
# Load the pre-trained ResNet50 model from ImageNet
|
21 |
+
model = models.resnet50(pretrained=False)
|
22 |
+
|
23 |
+
# Load custom weights from a .pth file
|
24 |
+
state_dict = torch.load(model_path)
|
25 |
+
|
26 |
+
# Filter out unexpected keys
|
27 |
+
filtered_state_dict = {k: v for k, v in state_dict['model_state_dict'].items() if k in model.state_dict()}
|
28 |
+
|
29 |
+
# Load the filtered state dictionary into the model
|
30 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
def load_classes():
|
35 |
+
"""
|
36 |
+
Load the classes.
|
37 |
+
"""
|
38 |
+
# Get ImageNet class names from ResNet50 weights
|
39 |
+
classes = models.ResNet50_Weights.IMAGENET1K_V2.meta["categories"]
|
40 |
+
return classes
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
"""
|
45 |
+
Main function for the application.
|
46 |
+
"""
|
47 |
+
# Load the model at startup
|
48 |
+
model = load_model("resnet50_imagenet1k.pth")
|
49 |
+
|
50 |
+
# Load the classes at startup
|
51 |
+
classes = load_classes()
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown(
|
55 |
+
"""
|
56 |
+
# ImageNet-1K trained on ResNet50v2
|
57 |
+
"""
|
58 |
+
)
|
59 |
+
|
60 |
+
# #############################################################################
|
61 |
+
# ################################ GradCam Tab ################################
|
62 |
+
# #############################################################################
|
63 |
+
with gr.Tab("GradCam"):
|
64 |
+
gr.Markdown(
|
65 |
+
"""
|
66 |
+
Visualize Class Activations Maps generated by the model's layer for the predicted class.
|
67 |
+
This is used to see what the model is actually looking at in the image.
|
68 |
+
"""
|
69 |
+
)
|
70 |
+
with gr.Row():
|
71 |
+
# Update the image input dimensions
|
72 |
+
img_input = [gr.Image(label="Input Image", type="numpy", height=224)] # Changed dimensions
|
73 |
+
gradcam_outputs = [
|
74 |
+
gr.Label(label="Predictions"),
|
75 |
+
gr.Image(label="GradCAM Output", height=224) # Match input image height
|
76 |
+
]
|
77 |
+
|
78 |
+
with gr.Row():
|
79 |
+
gradcam_inputs = [
|
80 |
+
gr.Slider(0, 1, value=0.5, label="Activation Map Transparency"),
|
81 |
+
gr.Slider(1, 10, value=3, step=1, label="Number of Top Predictions"),
|
82 |
+
gr.Slider(1, 6, value=4, step=1, label="Target Layer Number")
|
83 |
+
]
|
84 |
+
|
85 |
+
gradcam_button = gr.Button("Generate GradCAM")
|
86 |
+
# Pass model to inference function using partial
|
87 |
+
from functools import partial
|
88 |
+
inference_fn = partial(inference, model=model, classes=classes)
|
89 |
+
gradcam_button.click(inference_fn, inputs=img_input + gradcam_inputs, outputs=gradcam_outputs)
|
90 |
+
|
91 |
+
gr.Markdown("## Examples")
|
92 |
+
gr.Examples(
|
93 |
+
examples=[
|
94 |
+
["./assets/examples/dog.jpg", 0.5, 3, 4],
|
95 |
+
["./assets/examples/cat.jpg", 0.5, 3, 4],
|
96 |
+
["./assets/examples/frog.jpg", 0.5, 3, 4],
|
97 |
+
["./assets/examples/bird.jpg", 0.5, 3, 4],
|
98 |
+
["./assets/examples/shark-plane.jpg", 0.5, 3, 4],
|
99 |
+
["./assets/examples/car.jpg", 0.5, 3, 4],
|
100 |
+
["./assets/examples/truck.jpg", 0.5, 3, 4],
|
101 |
+
["./assets/examples/horse.jpg", 0.5, 3, 4],
|
102 |
+
["./assets/examples/plane.jpg", 0.5, 3, 4],
|
103 |
+
["./assets/examples/ship.png", 0.5, 3, 4]
|
104 |
+
],
|
105 |
+
inputs=img_input + gradcam_inputs,
|
106 |
+
fn=inference_fn,
|
107 |
+
outputs=gradcam_outputs
|
108 |
+
)
|
109 |
+
|
110 |
+
gr.close_all()
|
111 |
+
demo.launch(debug=True)
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
main()
|
assets/examples/bird.jpg
ADDED
![]() |
assets/examples/car.jpg
ADDED
![]() |
assets/examples/cat.jpg
ADDED
![]() |
assets/examples/dog.jpg
ADDED
![]() |
assets/examples/frog.jpg
ADDED
![]() |
assets/examples/horse.jpg
ADDED
![]() |
assets/examples/plane.jpg
ADDED
![]() |
Git LFS Details
|
assets/examples/shark-plane.jpg
ADDED
![]() |
assets/examples/ship.png
ADDED
![]() |
assets/examples/truck.jpg
ADDED
![]() |
inference.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Inference script for ResNet50 trained on ImageNet-1K.
|
4 |
+
"""
|
5 |
+
# Standard Library Imports
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from collections import OrderedDict
|
9 |
+
|
10 |
+
# Third Party Imports
|
11 |
+
from torchvision import transforms
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from torchvision.models import resnet50
|
14 |
+
from pytorch_grad_cam import GradCAM
|
15 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
16 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
17 |
+
|
18 |
+
|
19 |
+
def inference(input_img,
|
20 |
+
model,
|
21 |
+
classes,
|
22 |
+
transparency=0.5,
|
23 |
+
number_of_top_classes=3,
|
24 |
+
target_layer_number=4):
|
25 |
+
"""
|
26 |
+
Function to run inference on the input image
|
27 |
+
:param input_img: Image provided by the user
|
28 |
+
:param model: Model to use for inference
|
29 |
+
:param classes: Classes to use for inference
|
30 |
+
:param transparency: Percentage of cam overlap over the input image
|
31 |
+
:param number_of_top_classes: Number of top predictions for the input image
|
32 |
+
:param target_layer_number: Layer for which GradCam to be shown
|
33 |
+
"""
|
34 |
+
# Save a copy of input img
|
35 |
+
org_img = input_img.copy()
|
36 |
+
|
37 |
+
# Calculate mean over each channel of input image
|
38 |
+
mean_r, mean_g, mean_b = np.mean(input_img[:, :, 0]/255.), np.mean(input_img[:, :, 1]/255.), np.mean(input_img[:, :, 2]/255.)
|
39 |
+
|
40 |
+
# Calculate Standard deviation over each channel
|
41 |
+
std_r, std_g, std_b = np.std(input_img[:, :, 0]/255.), np.std(input_img[:, :, 1]/255.), np.std(input_img[:, :, 2]/255.)
|
42 |
+
|
43 |
+
# Convert img to tensor and normalize it
|
44 |
+
_transform = transforms.Compose([
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize((mean_r, mean_g, mean_b), (std_r, std_g, std_b))
|
47 |
+
])
|
48 |
+
|
49 |
+
# Preprocess the input image
|
50 |
+
input_tensor = _transform(input_img)
|
51 |
+
|
52 |
+
# Create a mini-batch as expected by the model
|
53 |
+
input_tensor = input_tensor.unsqueeze(0)
|
54 |
+
|
55 |
+
# Move the input and model to GPU if available
|
56 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
57 |
+
input_tensor = input_tensor.to(device)
|
58 |
+
model.to(device)
|
59 |
+
|
60 |
+
# Get Model Predictions
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(input_tensor)
|
63 |
+
probabilities = torch.softmax(outputs, dim=1)[0]
|
64 |
+
del outputs
|
65 |
+
confidences = {classes[i]: float(probabilities[i]) for i in range(1000)}
|
66 |
+
|
67 |
+
# Select the top classes based on user input
|
68 |
+
sorted_confidences = sorted(confidences.items(), key=lambda val: val[1], reverse=True)
|
69 |
+
show_confidences = OrderedDict(sorted_confidences[:number_of_top_classes])
|
70 |
+
|
71 |
+
# Map layer numbers to meaningful parts of the ResNet architecture
|
72 |
+
_layers = {
|
73 |
+
1: model.conv1, # Initial convolution layer
|
74 |
+
2: model.layer1[-1], # Last bottleneck of first residual block
|
75 |
+
3: model.layer2[-1], # Last bottleneck of second residual block
|
76 |
+
4: model.layer3[-1], # Last bottleneck of third residual block
|
77 |
+
5: model.layer4[-1], # Last bottleneck of fourth residual block
|
78 |
+
6: model.layer4[-1] # Changed from fc to last conv layer for better visualization
|
79 |
+
}
|
80 |
+
|
81 |
+
# Ensure valid layer selection
|
82 |
+
target_layer_number = min(max(target_layer_number, 1), 6)
|
83 |
+
target_layers = [_layers[target_layer_number]]
|
84 |
+
|
85 |
+
# Get the class activations from the selected layer
|
86 |
+
cam = GradCAM(model=model, target_layers=target_layers)
|
87 |
+
|
88 |
+
# Get the most probable class index
|
89 |
+
top_class = max(confidences.items(), key=lambda x: x[1])[0]
|
90 |
+
class_idx = classes.index(top_class)
|
91 |
+
|
92 |
+
# Generate GradCAM for the top predicted class
|
93 |
+
grayscale_cam = cam(input_tensor=input_tensor,
|
94 |
+
targets=[ClassifierOutputTarget(class_idx)],
|
95 |
+
aug_smooth=True,
|
96 |
+
eigen_smooth=True)
|
97 |
+
model.eval()
|
98 |
+
grayscale_cam = grayscale_cam[0, :]
|
99 |
+
|
100 |
+
# Overlay input image with Class activations
|
101 |
+
visualization = show_cam_on_image(org_img/255., grayscale_cam, use_rgb=True, image_weight=transparency)
|
102 |
+
return show_confidences, visualization
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.38.1
|
2 |
+
grad-cam==1.6.1
|
3 |
+
numpy==1.25.2
|
4 |
+
torch==2.0.1+cpu
|
5 |
+
torchvision==0.15.2+cpu
|