ImageNet / inference.py
Shilpaj's picture
Debug: Prediction issue
aa63283
raw
history blame
4.48 kB
#!/usr/bin/env python
"""
Inference script for ResNet50 trained on ImageNet-1K.
"""
# Standard Library Imports
import numpy as np
import torch
from collections import OrderedDict
# Third Party Imports
import spaces
from torchvision import transforms
from torch.nn import functional as F
from torchvision.models import resnet50
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
@spaces.GPU
def inference(image, alpha, top_k, target_layer, model=None, classes=None):
"""
Run inference with GradCAM visualization
"""
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Debug: Print model mode
print(f"Model mode: {model.training}")
# Ensure model is on correct device and in eval mode
model = model.to(device)
model.eval()
with torch.cuda.amp.autocast():
org_img = image.copy()
# Convert img to tensor and normalize it
_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# Debug: Print image tensor stats
input_tensor = _transform(image).to(device)
print(f"Input tensor shape: {input_tensor.shape}")
print(f"Input tensor range: [{input_tensor.min():.2f}, {input_tensor.max():.2f}]")
input_tensor = input_tensor.unsqueeze(0)
input_tensor.requires_grad = True
# Get Model Predictions
outputs = model(input_tensor)
print(f"Raw output shape: {outputs.shape}")
print(f"Raw output range: [{outputs.min():.2f}, {outputs.max():.2f}]")
probabilities = torch.softmax(outputs, dim=1)[0]
print(f"Probabilities sum: {probabilities.sum():.2f}") # Should be close to 1.0
# Get top 5 predictions for debugging
top_probs, top_indices = torch.topk(probabilities, 5)
print("\nTop 5 predictions:")
for idx, (prob, class_idx) in enumerate(zip(top_probs, top_indices)):
class_name = classes[class_idx]
print(f"{idx+1}. {class_name}: {prob:.4f}")
# Create confidence dictionary
confidences = {classes[i]: float(probabilities[i]) for i in range(len(classes))}
sorted_confidences = sorted(confidences.items(), key=lambda x: x[1], reverse=True)
show_confidences = OrderedDict(sorted_confidences[:top_k])
# Map layer numbers to meaningful parts of the ResNet architecture
_layers = {
1: model.conv1,
2: model.layer1[-1],
3: model.layer2[-1],
4: model.layer3[-1],
5: model.layer4[-1],
6: model.layer4[-1]
}
target_layer = min(max(target_layer, 1), 6)
target_layers = [_layers[target_layer]]
# Debug: Print selected layer
print(f"\nUsing target layer: {target_layers[0]}")
cam = GradCAM(model=model, target_layers=target_layers)
# Get the most probable class index
top_class = max(confidences.items(), key=lambda x: x[1])[0]
class_idx = classes.index(top_class)
print(f"\nSelected class for GradCAM: {top_class} (index: {class_idx})")
grayscale_cam = cam(
input_tensor=input_tensor,
targets=[ClassifierOutputTarget(class_idx)],
aug_smooth=False,
eigen_smooth=False
)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(org_img/255., grayscale_cam, use_rgb=True, image_weight=alpha)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return show_confidences, visualization
except Exception as e:
print(f"Error in inference: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise e