import gradio as gr import requests import os # Retrieve the Hugging Face token from environment variables HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") if not HF_TOKEN: raise ValueError("Please set your Hugging Face API token as HF_API_TOKEN in the Secrets settings.") # Model details MODEL_ID = "meta-llama/llama-3.2-70b-instruct" # Change to the exact model ID API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}" # Headers for API requests HEADERS = { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json" } def chat_with_llama(prompt, temperature=0.7, max_tokens=256): """Sends a request to Hugging Face Inference API and returns the response.""" payload = { "inputs": prompt, "parameters": { "temperature": temperature, "max_new_tokens": max_tokens, "top_p": 0.95 } } response = requests.post(API_URL, headers=HEADERS, json=payload) if response.status_code == 200: return response.json()[0]["generated_text"] else: return f"Error {response.status_code}: {response.text}" # Gradio UI with gr.Blocks() as demo: gr.Markdown("

🚀 Llama 3.2 3B Instruct Chatbot

") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Enter your prompt:", placeholder="Ask me anything...", lines=3) temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature") max_tokens = gr.Slider(50, 1024, value=256, label="Max Tokens") submit = gr.Button("Generate Response") with gr.Column(): output = gr.Textbox(label="AI Response", interactive=False, lines=10) submit.click(chat_with_llama, inputs=[prompt, temperature, max_tokens], outputs=output) # Launch app if __name__ == "__main__": demo.launch()