Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Delete pipeline_ltx_condition.py
Browse files- pipeline_ltx_condition.py +0 -1194
    	
        pipeline_ltx_condition.py
    DELETED
    
    | @@ -1,1194 +0,0 @@ | |
| 1 | 
            -
            # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            -
            #
         | 
| 3 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            -
            # You may obtain a copy of the License at
         | 
| 6 | 
            -
            #
         | 
| 7 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            -
            #
         | 
| 9 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            -
            # limitations under the License.
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            import inspect
         | 
| 16 | 
            -
            from dataclasses import dataclass
         | 
| 17 | 
            -
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            import PIL.Image
         | 
| 20 | 
            -
            import torch
         | 
| 21 | 
            -
            from transformers import T5EncoderModel, T5TokenizerFast
         | 
| 22 | 
            -
             | 
| 23 | 
            -
            from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
         | 
| 24 | 
            -
            from diffusers.image_processor import PipelineImageInput
         | 
| 25 | 
            -
            from diffusers.loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
         | 
| 26 | 
            -
            from diffusers.models.autoencoders import AutoencoderKLLTXVideo
         | 
| 27 | 
            -
            from diffusers.models.transformers import LTXVideoTransformer3DModel
         | 
| 28 | 
            -
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         | 
| 29 | 
            -
            from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
         | 
| 30 | 
            -
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 31 | 
            -
            from diffusers.video_processor import VideoProcessor
         | 
| 32 | 
            -
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 33 | 
            -
            from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
         | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
            if is_torch_xla_available():
         | 
| 37 | 
            -
                import torch_xla.core.xla_model as xm
         | 
| 38 | 
            -
             | 
| 39 | 
            -
                XLA_AVAILABLE = True
         | 
| 40 | 
            -
            else:
         | 
| 41 | 
            -
                XLA_AVAILABLE = False
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 44 | 
            -
             | 
| 45 | 
            -
            EXAMPLE_DOC_STRING = """
         | 
| 46 | 
            -
                Examples:
         | 
| 47 | 
            -
                    ```py
         | 
| 48 | 
            -
                    >>> import torch
         | 
| 49 | 
            -
                    >>> from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, LTXVideoCondition
         | 
| 50 | 
            -
                    >>> from diffusers.utils import export_to_video, load_video, load_image
         | 
| 51 | 
            -
             | 
| 52 | 
            -
                    >>> pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16)
         | 
| 53 | 
            -
                    >>> pipe.to("cuda")
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                    >>> # Load input image and video
         | 
| 56 | 
            -
                    >>> video = load_video(
         | 
| 57 | 
            -
                    ...     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
         | 
| 58 | 
            -
                    ... )
         | 
| 59 | 
            -
                    >>> image = load_image(
         | 
| 60 | 
            -
                    ...     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input.jpg"
         | 
| 61 | 
            -
                    ... )
         | 
| 62 | 
            -
             | 
| 63 | 
            -
                    >>> # Create conditioning objects
         | 
| 64 | 
            -
                    >>> condition1 = LTXVideoCondition(
         | 
| 65 | 
            -
                    ...     image=image,
         | 
| 66 | 
            -
                    ...     frame_index=0,
         | 
| 67 | 
            -
                    ... )
         | 
| 68 | 
            -
                    >>> condition2 = LTXVideoCondition(
         | 
| 69 | 
            -
                    ...     video=video,
         | 
| 70 | 
            -
                    ...     frame_index=80,
         | 
| 71 | 
            -
                    ... )
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                    >>> prompt = "The video depicts a long, straight highway stretching into the distance, flanked by metal guardrails. The road is divided into multiple lanes, with a few vehicles visible in the far distance. The surrounding landscape features dry, grassy fields on one side and rolling hills on the other. The sky is mostly clear with a few scattered clouds, suggesting a bright, sunny day. And then the camera switch to a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
         | 
| 74 | 
            -
                    >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
         | 
| 75 | 
            -
             | 
| 76 | 
            -
                    >>> # Generate video
         | 
| 77 | 
            -
                    >>> generator = torch.Generator("cuda").manual_seed(0)
         | 
| 78 | 
            -
                    >>> # Text-only conditioning is also supported without the need to pass `conditions`
         | 
| 79 | 
            -
                    >>> video = pipe(
         | 
| 80 | 
            -
                    ...     conditions=[condition1, condition2],
         | 
| 81 | 
            -
                    ...     prompt=prompt,
         | 
| 82 | 
            -
                    ...     negative_prompt=negative_prompt,
         | 
| 83 | 
            -
                    ...     width=768,
         | 
| 84 | 
            -
                    ...     height=512,
         | 
| 85 | 
            -
                    ...     num_frames=161,
         | 
| 86 | 
            -
                    ...     num_inference_steps=40,
         | 
| 87 | 
            -
                    ...     generator=generator,
         | 
| 88 | 
            -
                    ... ).frames[0]
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                    >>> export_to_video(video, "output.mp4", fps=24)
         | 
| 91 | 
            -
                    ```
         | 
| 92 | 
            -
            """
         | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
            @dataclass
         | 
| 96 | 
            -
            class LTXVideoCondition:
         | 
| 97 | 
            -
                """
         | 
| 98 | 
            -
                Defines a single frame-conditioning item for LTX Video - a single frame or a sequence of frames.
         | 
| 99 | 
            -
             | 
| 100 | 
            -
                Attributes:
         | 
| 101 | 
            -
                    image (`PIL.Image.Image`):
         | 
| 102 | 
            -
                        The image to condition the video on.
         | 
| 103 | 
            -
                    video (`List[PIL.Image.Image]`):
         | 
| 104 | 
            -
                        The video to condition the video on.
         | 
| 105 | 
            -
                    frame_index (`int`):
         | 
| 106 | 
            -
                        The frame index at which the image or video will conditionally effect the video generation.
         | 
| 107 | 
            -
                    strength (`float`, defaults to `1.0`):
         | 
| 108 | 
            -
                        The strength of the conditioning effect. A value of `1.0` means the conditioning effect is fully applied.
         | 
| 109 | 
            -
                """
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                image: Optional[PIL.Image.Image] = None
         | 
| 112 | 
            -
                video: Optional[List[PIL.Image.Image]] = None
         | 
| 113 | 
            -
                frame_index: int = 0
         | 
| 114 | 
            -
                strength: float = 1.0
         | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
            # from LTX-Video/ltx_video/schedulers/rf.py
         | 
| 118 | 
            -
            def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
         | 
| 119 | 
            -
                if linear_steps is None:
         | 
| 120 | 
            -
                    linear_steps = num_steps // 2
         | 
| 121 | 
            -
                if num_steps < 2:
         | 
| 122 | 
            -
                    return torch.tensor([1.0])
         | 
| 123 | 
            -
                linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
         | 
| 124 | 
            -
                threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
         | 
| 125 | 
            -
                quadratic_steps = num_steps - linear_steps
         | 
| 126 | 
            -
                quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
         | 
| 127 | 
            -
                linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
         | 
| 128 | 
            -
                const = quadratic_coef * (linear_steps**2)
         | 
| 129 | 
            -
                quadratic_sigma_schedule = [
         | 
| 130 | 
            -
                    quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
         | 
| 131 | 
            -
                ]
         | 
| 132 | 
            -
                sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
         | 
| 133 | 
            -
                sigma_schedule = [1.0 - x for x in sigma_schedule]
         | 
| 134 | 
            -
                return torch.tensor(sigma_schedule[:-1])
         | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
            # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
         | 
| 138 | 
            -
            def calculate_shift(
         | 
| 139 | 
            -
                image_seq_len,
         | 
| 140 | 
            -
                base_seq_len: int = 256,
         | 
| 141 | 
            -
                max_seq_len: int = 4096,
         | 
| 142 | 
            -
                base_shift: float = 0.5,
         | 
| 143 | 
            -
                max_shift: float = 1.15,
         | 
| 144 | 
            -
            ):
         | 
| 145 | 
            -
                m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
         | 
| 146 | 
            -
                b = base_shift - m * base_seq_len
         | 
| 147 | 
            -
                mu = image_seq_len * m + b
         | 
| 148 | 
            -
                return mu
         | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         | 
| 152 | 
            -
            def retrieve_timesteps(
         | 
| 153 | 
            -
                scheduler,
         | 
| 154 | 
            -
                num_inference_steps: Optional[int] = None,
         | 
| 155 | 
            -
                device: Optional[Union[str, torch.device]] = None,
         | 
| 156 | 
            -
                timesteps: Optional[List[int]] = None,
         | 
| 157 | 
            -
                sigmas: Optional[List[float]] = None,
         | 
| 158 | 
            -
                **kwargs,
         | 
| 159 | 
            -
            ):
         | 
| 160 | 
            -
                r"""
         | 
| 161 | 
            -
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         | 
| 162 | 
            -
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         | 
| 163 | 
            -
             | 
| 164 | 
            -
                Args:
         | 
| 165 | 
            -
                    scheduler (`SchedulerMixin`):
         | 
| 166 | 
            -
                        The scheduler to get timesteps from.
         | 
| 167 | 
            -
                    num_inference_steps (`int`):
         | 
| 168 | 
            -
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         | 
| 169 | 
            -
                        must be `None`.
         | 
| 170 | 
            -
                    device (`str` or `torch.device`, *optional*):
         | 
| 171 | 
            -
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         | 
| 172 | 
            -
                    timesteps (`List[int]`, *optional*):
         | 
| 173 | 
            -
                        Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
         | 
| 174 | 
            -
                        `num_inference_steps` and `sigmas` must be `None`.
         | 
| 175 | 
            -
                    sigmas (`List[float]`, *optional*):
         | 
| 176 | 
            -
                        Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
         | 
| 177 | 
            -
                        `num_inference_steps` and `timesteps` must be `None`.
         | 
| 178 | 
            -
             | 
| 179 | 
            -
                Returns:
         | 
| 180 | 
            -
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         | 
| 181 | 
            -
                    second element is the number of inference steps.
         | 
| 182 | 
            -
                """
         | 
| 183 | 
            -
                if timesteps is not None and sigmas is not None:
         | 
| 184 | 
            -
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         | 
| 185 | 
            -
                if timesteps is not None:
         | 
| 186 | 
            -
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 187 | 
            -
                    if not accepts_timesteps:
         | 
| 188 | 
            -
                        raise ValueError(
         | 
| 189 | 
            -
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 190 | 
            -
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         | 
| 191 | 
            -
                        )
         | 
| 192 | 
            -
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         | 
| 193 | 
            -
                    timesteps = scheduler.timesteps
         | 
| 194 | 
            -
                    num_inference_steps = len(timesteps)
         | 
| 195 | 
            -
                elif sigmas is not None:
         | 
| 196 | 
            -
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 197 | 
            -
                    if not accept_sigmas:
         | 
| 198 | 
            -
                        raise ValueError(
         | 
| 199 | 
            -
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 200 | 
            -
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         | 
| 201 | 
            -
                        )
         | 
| 202 | 
            -
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         | 
| 203 | 
            -
                    timesteps = scheduler.timesteps
         | 
| 204 | 
            -
                    num_inference_steps = len(timesteps)
         | 
| 205 | 
            -
                else:
         | 
| 206 | 
            -
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 207 | 
            -
                    timesteps = scheduler.timesteps
         | 
| 208 | 
            -
                return timesteps, num_inference_steps
         | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
| 211 | 
            -
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         | 
| 212 | 
            -
            def retrieve_latents(
         | 
| 213 | 
            -
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         | 
| 214 | 
            -
            ):
         | 
| 215 | 
            -
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         | 
| 216 | 
            -
                    return encoder_output.latent_dist.sample(generator)
         | 
| 217 | 
            -
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         | 
| 218 | 
            -
                    return encoder_output.latent_dist.mode()
         | 
| 219 | 
            -
                elif hasattr(encoder_output, "latents"):
         | 
| 220 | 
            -
                    return encoder_output.latents
         | 
| 221 | 
            -
                else:
         | 
| 222 | 
            -
                    raise AttributeError("Could not access latents of provided encoder_output")
         | 
| 223 | 
            -
             | 
| 224 | 
            -
             | 
| 225 | 
            -
            class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
         | 
| 226 | 
            -
                r"""
         | 
| 227 | 
            -
                Pipeline for text/image/video-to-video generation.
         | 
| 228 | 
            -
             | 
| 229 | 
            -
                Reference: https://github.com/Lightricks/LTX-Video
         | 
| 230 | 
            -
             | 
| 231 | 
            -
                Args:
         | 
| 232 | 
            -
                    transformer ([`LTXVideoTransformer3DModel`]):
         | 
| 233 | 
            -
                        Conditional Transformer architecture to denoise the encoded video latents.
         | 
| 234 | 
            -
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         | 
| 235 | 
            -
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         | 
| 236 | 
            -
                    vae ([`AutoencoderKLLTXVideo`]):
         | 
| 237 | 
            -
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 238 | 
            -
                    text_encoder ([`T5EncoderModel`]):
         | 
| 239 | 
            -
                        [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
         | 
| 240 | 
            -
                        the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         | 
| 241 | 
            -
                    tokenizer (`CLIPTokenizer`):
         | 
| 242 | 
            -
                        Tokenizer of class
         | 
| 243 | 
            -
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 244 | 
            -
                    tokenizer (`T5TokenizerFast`):
         | 
| 245 | 
            -
                        Second Tokenizer of class
         | 
| 246 | 
            -
                        [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
         | 
| 247 | 
            -
                """
         | 
| 248 | 
            -
             | 
| 249 | 
            -
                model_cpu_offload_seq = "text_encoder->transformer->vae"
         | 
| 250 | 
            -
                _optional_components = []
         | 
| 251 | 
            -
                _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
         | 
| 252 | 
            -
             | 
| 253 | 
            -
                def __init__(
         | 
| 254 | 
            -
                    self,
         | 
| 255 | 
            -
                    scheduler: FlowMatchEulerDiscreteScheduler,
         | 
| 256 | 
            -
                    vae: AutoencoderKLLTXVideo,
         | 
| 257 | 
            -
                    text_encoder: T5EncoderModel,
         | 
| 258 | 
            -
                    tokenizer: T5TokenizerFast,
         | 
| 259 | 
            -
                    transformer: LTXVideoTransformer3DModel,
         | 
| 260 | 
            -
                ):
         | 
| 261 | 
            -
                    super().__init__()
         | 
| 262 | 
            -
             | 
| 263 | 
            -
                    self.register_modules(
         | 
| 264 | 
            -
                        vae=vae,
         | 
| 265 | 
            -
                        text_encoder=text_encoder,
         | 
| 266 | 
            -
                        tokenizer=tokenizer,
         | 
| 267 | 
            -
                        transformer=transformer,
         | 
| 268 | 
            -
                        scheduler=scheduler,
         | 
| 269 | 
            -
                    )
         | 
| 270 | 
            -
             | 
| 271 | 
            -
                    self.vae_spatial_compression_ratio = (
         | 
| 272 | 
            -
                        self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32
         | 
| 273 | 
            -
                    )
         | 
| 274 | 
            -
                    self.vae_temporal_compression_ratio = (
         | 
| 275 | 
            -
                        self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8
         | 
| 276 | 
            -
                    )
         | 
| 277 | 
            -
                    self.transformer_spatial_patch_size = (
         | 
| 278 | 
            -
                        self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1
         | 
| 279 | 
            -
                    )
         | 
| 280 | 
            -
                    self.transformer_temporal_patch_size = (
         | 
| 281 | 
            -
                        self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1
         | 
| 282 | 
            -
                    )
         | 
| 283 | 
            -
             | 
| 284 | 
            -
                    self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
         | 
| 285 | 
            -
                    self.tokenizer_max_length = (
         | 
| 286 | 
            -
                        self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128
         | 
| 287 | 
            -
                    )
         | 
| 288 | 
            -
             | 
| 289 | 
            -
                    self.default_height = 512
         | 
| 290 | 
            -
                    self.default_width = 704
         | 
| 291 | 
            -
                    self.default_frames = 121
         | 
| 292 | 
            -
             | 
| 293 | 
            -
                def _get_t5_prompt_embeds(
         | 
| 294 | 
            -
                    self,
         | 
| 295 | 
            -
                    prompt: Union[str, List[str]] = None,
         | 
| 296 | 
            -
                    num_videos_per_prompt: int = 1,
         | 
| 297 | 
            -
                    max_sequence_length: int = 256,
         | 
| 298 | 
            -
                    device: Optional[torch.device] = None,
         | 
| 299 | 
            -
                    dtype: Optional[torch.dtype] = None,
         | 
| 300 | 
            -
                ):
         | 
| 301 | 
            -
                    device = device or self._execution_device
         | 
| 302 | 
            -
                    dtype = dtype or self.text_encoder.dtype
         | 
| 303 | 
            -
             | 
| 304 | 
            -
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 305 | 
            -
                    batch_size = len(prompt)
         | 
| 306 | 
            -
             | 
| 307 | 
            -
                    text_inputs = self.tokenizer(
         | 
| 308 | 
            -
                        prompt,
         | 
| 309 | 
            -
                        padding="max_length",
         | 
| 310 | 
            -
                        max_length=max_sequence_length,
         | 
| 311 | 
            -
                        truncation=True,
         | 
| 312 | 
            -
                        add_special_tokens=True,
         | 
| 313 | 
            -
                        return_tensors="pt",
         | 
| 314 | 
            -
                    )
         | 
| 315 | 
            -
                    text_input_ids = text_inputs.input_ids
         | 
| 316 | 
            -
                    prompt_attention_mask = text_inputs.attention_mask
         | 
| 317 | 
            -
                    prompt_attention_mask = prompt_attention_mask.bool().to(device)
         | 
| 318 | 
            -
             | 
| 319 | 
            -
                    untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 320 | 
            -
             | 
| 321 | 
            -
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 322 | 
            -
                        removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
         | 
| 323 | 
            -
                        logger.warning(
         | 
| 324 | 
            -
                            "The following part of your input was truncated because `max_sequence_length` is set to "
         | 
| 325 | 
            -
                            f" {max_sequence_length} tokens: {removed_text}"
         | 
| 326 | 
            -
                        )
         | 
| 327 | 
            -
             | 
| 328 | 
            -
                    prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
         | 
| 329 | 
            -
                    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
         | 
| 330 | 
            -
             | 
| 331 | 
            -
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 332 | 
            -
                    _, seq_len, _ = prompt_embeds.shape
         | 
| 333 | 
            -
                    prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
         | 
| 334 | 
            -
                    prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
         | 
| 335 | 
            -
             | 
| 336 | 
            -
                    prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
         | 
| 337 | 
            -
                    prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
         | 
| 338 | 
            -
             | 
| 339 | 
            -
                    return prompt_embeds, prompt_attention_mask
         | 
| 340 | 
            -
             | 
| 341 | 
            -
                # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt
         | 
| 342 | 
            -
                def encode_prompt(
         | 
| 343 | 
            -
                    self,
         | 
| 344 | 
            -
                    prompt: Union[str, List[str]],
         | 
| 345 | 
            -
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 346 | 
            -
                    do_classifier_free_guidance: bool = True,
         | 
| 347 | 
            -
                    num_videos_per_prompt: int = 1,
         | 
| 348 | 
            -
                    prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 349 | 
            -
                    negative_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 350 | 
            -
                    prompt_attention_mask: Optional[torch.Tensor] = None,
         | 
| 351 | 
            -
                    negative_prompt_attention_mask: Optional[torch.Tensor] = None,
         | 
| 352 | 
            -
                    max_sequence_length: int = 256,
         | 
| 353 | 
            -
                    device: Optional[torch.device] = None,
         | 
| 354 | 
            -
                    dtype: Optional[torch.dtype] = None,
         | 
| 355 | 
            -
                ):
         | 
| 356 | 
            -
                    r"""
         | 
| 357 | 
            -
                    Encodes the prompt into text encoder hidden states.
         | 
| 358 | 
            -
             | 
| 359 | 
            -
                    Args:
         | 
| 360 | 
            -
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 361 | 
            -
                            prompt to be encoded
         | 
| 362 | 
            -
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 363 | 
            -
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 364 | 
            -
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 365 | 
            -
                            less than `1`).
         | 
| 366 | 
            -
                        do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
         | 
| 367 | 
            -
                            Whether to use classifier free guidance or not.
         | 
| 368 | 
            -
                        num_videos_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 369 | 
            -
                            Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
         | 
| 370 | 
            -
                        prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 371 | 
            -
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 372 | 
            -
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 373 | 
            -
                        negative_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 374 | 
            -
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 375 | 
            -
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 376 | 
            -
                            argument.
         | 
| 377 | 
            -
                        device: (`torch.device`, *optional*):
         | 
| 378 | 
            -
                            torch device
         | 
| 379 | 
            -
                        dtype: (`torch.dtype`, *optional*):
         | 
| 380 | 
            -
                            torch dtype
         | 
| 381 | 
            -
                    """
         | 
| 382 | 
            -
                    device = device or self._execution_device
         | 
| 383 | 
            -
             | 
| 384 | 
            -
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 385 | 
            -
                    if prompt is not None:
         | 
| 386 | 
            -
                        batch_size = len(prompt)
         | 
| 387 | 
            -
                    else:
         | 
| 388 | 
            -
                        batch_size = prompt_embeds.shape[0]
         | 
| 389 | 
            -
             | 
| 390 | 
            -
                    if prompt_embeds is None:
         | 
| 391 | 
            -
                        prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
         | 
| 392 | 
            -
                            prompt=prompt,
         | 
| 393 | 
            -
                            num_videos_per_prompt=num_videos_per_prompt,
         | 
| 394 | 
            -
                            max_sequence_length=max_sequence_length,
         | 
| 395 | 
            -
                            device=device,
         | 
| 396 | 
            -
                            dtype=dtype,
         | 
| 397 | 
            -
                        )
         | 
| 398 | 
            -
             | 
| 399 | 
            -
                    if do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 400 | 
            -
                        negative_prompt = negative_prompt or ""
         | 
| 401 | 
            -
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         | 
| 402 | 
            -
             | 
| 403 | 
            -
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 404 | 
            -
                            raise TypeError(
         | 
| 405 | 
            -
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 406 | 
            -
                                f" {type(prompt)}."
         | 
| 407 | 
            -
                            )
         | 
| 408 | 
            -
                        elif batch_size != len(negative_prompt):
         | 
| 409 | 
            -
                            raise ValueError(
         | 
| 410 | 
            -
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 411 | 
            -
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 412 | 
            -
                                " the batch size of `prompt`."
         | 
| 413 | 
            -
                            )
         | 
| 414 | 
            -
             | 
| 415 | 
            -
                        negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
         | 
| 416 | 
            -
                            prompt=negative_prompt,
         | 
| 417 | 
            -
                            num_videos_per_prompt=num_videos_per_prompt,
         | 
| 418 | 
            -
                            max_sequence_length=max_sequence_length,
         | 
| 419 | 
            -
                            device=device,
         | 
| 420 | 
            -
                            dtype=dtype,
         | 
| 421 | 
            -
                        )
         | 
| 422 | 
            -
             | 
| 423 | 
            -
                    return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
         | 
| 424 | 
            -
             | 
| 425 | 
            -
                def check_inputs(
         | 
| 426 | 
            -
                    self,
         | 
| 427 | 
            -
                    prompt,
         | 
| 428 | 
            -
                    conditions,
         | 
| 429 | 
            -
                    image,
         | 
| 430 | 
            -
                    video,
         | 
| 431 | 
            -
                    frame_index,
         | 
| 432 | 
            -
                    strength,
         | 
| 433 | 
            -
                    height,
         | 
| 434 | 
            -
                    width,
         | 
| 435 | 
            -
                    callback_on_step_end_tensor_inputs=None,
         | 
| 436 | 
            -
                    prompt_embeds=None,
         | 
| 437 | 
            -
                    negative_prompt_embeds=None,
         | 
| 438 | 
            -
                    prompt_attention_mask=None,
         | 
| 439 | 
            -
                    negative_prompt_attention_mask=None,
         | 
| 440 | 
            -
                ):
         | 
| 441 | 
            -
                    if height % 32 != 0 or width % 32 != 0:
         | 
| 442 | 
            -
                        raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
         | 
| 443 | 
            -
             | 
| 444 | 
            -
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 445 | 
            -
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 446 | 
            -
                    ):
         | 
| 447 | 
            -
                        raise ValueError(
         | 
| 448 | 
            -
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 449 | 
            -
                        )
         | 
| 450 | 
            -
             | 
| 451 | 
            -
                    if prompt is not None and prompt_embeds is not None:
         | 
| 452 | 
            -
                        raise ValueError(
         | 
| 453 | 
            -
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 454 | 
            -
                            " only forward one of the two."
         | 
| 455 | 
            -
                        )
         | 
| 456 | 
            -
                    elif prompt is None and prompt_embeds is None:
         | 
| 457 | 
            -
                        raise ValueError(
         | 
| 458 | 
            -
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 459 | 
            -
                        )
         | 
| 460 | 
            -
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 461 | 
            -
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 462 | 
            -
             | 
| 463 | 
            -
                    if prompt_embeds is not None and prompt_attention_mask is None:
         | 
| 464 | 
            -
                        raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
         | 
| 465 | 
            -
             | 
| 466 | 
            -
                    if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
         | 
| 467 | 
            -
                        raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
         | 
| 468 | 
            -
             | 
| 469 | 
            -
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         | 
| 470 | 
            -
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         | 
| 471 | 
            -
                            raise ValueError(
         | 
| 472 | 
            -
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         | 
| 473 | 
            -
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         | 
| 474 | 
            -
                                f" {negative_prompt_embeds.shape}."
         | 
| 475 | 
            -
                            )
         | 
| 476 | 
            -
                        if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
         | 
| 477 | 
            -
                            raise ValueError(
         | 
| 478 | 
            -
                                "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
         | 
| 479 | 
            -
                                f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
         | 
| 480 | 
            -
                                f" {negative_prompt_attention_mask.shape}."
         | 
| 481 | 
            -
                            )
         | 
| 482 | 
            -
             | 
| 483 | 
            -
                    if conditions is not None and (image is not None or video is not None):
         | 
| 484 | 
            -
                        raise ValueError("If `conditions` is provided, `image` and `video` must not be provided.")
         | 
| 485 | 
            -
             | 
| 486 | 
            -
                    if conditions is None:
         | 
| 487 | 
            -
                        if isinstance(image, list) and isinstance(frame_index, list) and len(image) != len(frame_index):
         | 
| 488 | 
            -
                            raise ValueError(
         | 
| 489 | 
            -
                                "If `conditions` is not provided, `image` and `frame_index` must be of the same length."
         | 
| 490 | 
            -
                            )
         | 
| 491 | 
            -
                        elif isinstance(image, list) and isinstance(strength, list) and len(image) != len(strength):
         | 
| 492 | 
            -
                            raise ValueError("If `conditions` is not provided, `image` and `strength` must be of the same length.")
         | 
| 493 | 
            -
                        elif isinstance(video, list) and isinstance(frame_index, list) and len(video) != len(frame_index):
         | 
| 494 | 
            -
                            raise ValueError(
         | 
| 495 | 
            -
                                "If `conditions` is not provided, `video` and `frame_index` must be of the same length."
         | 
| 496 | 
            -
                            )
         | 
| 497 | 
            -
                        elif isinstance(video, list) and isinstance(strength, list) and len(video) != len(strength):
         | 
| 498 | 
            -
                            raise ValueError("If `conditions` is not provided, `video` and `strength` must be of the same length.")
         | 
| 499 | 
            -
             | 
| 500 | 
            -
                @staticmethod
         | 
| 501 | 
            -
                def _prepare_video_ids(
         | 
| 502 | 
            -
                    batch_size: int,
         | 
| 503 | 
            -
                    num_frames: int,
         | 
| 504 | 
            -
                    height: int,
         | 
| 505 | 
            -
                    width: int,
         | 
| 506 | 
            -
                    patch_size: int = 1,
         | 
| 507 | 
            -
                    patch_size_t: int = 1,
         | 
| 508 | 
            -
                    device: torch.device = None,
         | 
| 509 | 
            -
                ) -> torch.Tensor:
         | 
| 510 | 
            -
                    latent_sample_coords = torch.meshgrid(
         | 
| 511 | 
            -
                        torch.arange(0, num_frames, patch_size_t, device=device),
         | 
| 512 | 
            -
                        torch.arange(0, height, patch_size, device=device),
         | 
| 513 | 
            -
                        torch.arange(0, width, patch_size, device=device),
         | 
| 514 | 
            -
                        indexing="ij",
         | 
| 515 | 
            -
                    )
         | 
| 516 | 
            -
                    latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
         | 
| 517 | 
            -
                    latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
         | 
| 518 | 
            -
                    latent_coords = latent_coords.reshape(batch_size, -1, num_frames * height * width)
         | 
| 519 | 
            -
             | 
| 520 | 
            -
                    return latent_coords
         | 
| 521 | 
            -
             | 
| 522 | 
            -
                @staticmethod
         | 
| 523 | 
            -
                def _scale_video_ids(
         | 
| 524 | 
            -
                    video_ids: torch.Tensor,
         | 
| 525 | 
            -
                    scale_factor: int = 32,
         | 
| 526 | 
            -
                    scale_factor_t: int = 8,
         | 
| 527 | 
            -
                    frame_index: int = 0,
         | 
| 528 | 
            -
                    device: torch.device = None,
         | 
| 529 | 
            -
                ) -> torch.Tensor:
         | 
| 530 | 
            -
                    scaled_latent_coords = (
         | 
| 531 | 
            -
                        video_ids
         | 
| 532 | 
            -
                        * torch.tensor([scale_factor_t, scale_factor, scale_factor], device=video_ids.device)[None, :, None]
         | 
| 533 | 
            -
                    )
         | 
| 534 | 
            -
                    scaled_latent_coords[:, 0] = (scaled_latent_coords[:, 0] + 1 - scale_factor_t).clamp(min=0)
         | 
| 535 | 
            -
                    scaled_latent_coords[:, 0] += frame_index
         | 
| 536 | 
            -
             | 
| 537 | 
            -
                    return scaled_latent_coords
         | 
| 538 | 
            -
             | 
| 539 | 
            -
                @staticmethod
         | 
| 540 | 
            -
                # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
         | 
| 541 | 
            -
                def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
         | 
| 542 | 
            -
                    # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
         | 
| 543 | 
            -
                    # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
         | 
| 544 | 
            -
                    # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
         | 
| 545 | 
            -
                    # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
         | 
| 546 | 
            -
                    batch_size, num_channels, num_frames, height, width = latents.shape
         | 
| 547 | 
            -
                    post_patch_num_frames = num_frames // patch_size_t
         | 
| 548 | 
            -
                    post_patch_height = height // patch_size
         | 
| 549 | 
            -
                    post_patch_width = width // patch_size
         | 
| 550 | 
            -
                    latents = latents.reshape(
         | 
| 551 | 
            -
                        batch_size,
         | 
| 552 | 
            -
                        -1,
         | 
| 553 | 
            -
                        post_patch_num_frames,
         | 
| 554 | 
            -
                        patch_size_t,
         | 
| 555 | 
            -
                        post_patch_height,
         | 
| 556 | 
            -
                        patch_size,
         | 
| 557 | 
            -
                        post_patch_width,
         | 
| 558 | 
            -
                        patch_size,
         | 
| 559 | 
            -
                    )
         | 
| 560 | 
            -
                    latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
         | 
| 561 | 
            -
                    return latents
         | 
| 562 | 
            -
             | 
| 563 | 
            -
                @staticmethod
         | 
| 564 | 
            -
                # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
         | 
| 565 | 
            -
                def _unpack_latents(
         | 
| 566 | 
            -
                    latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
         | 
| 567 | 
            -
                ) -> torch.Tensor:
         | 
| 568 | 
            -
                    # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
         | 
| 569 | 
            -
                    # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
         | 
| 570 | 
            -
                    # what happens in the `_pack_latents` method.
         | 
| 571 | 
            -
                    batch_size = latents.size(0)
         | 
| 572 | 
            -
                    latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
         | 
| 573 | 
            -
                    latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
         | 
| 574 | 
            -
                    return latents
         | 
| 575 | 
            -
             | 
| 576 | 
            -
                @staticmethod
         | 
| 577 | 
            -
                # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
         | 
| 578 | 
            -
                def _normalize_latents(
         | 
| 579 | 
            -
                    latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
         | 
| 580 | 
            -
                ) -> torch.Tensor:
         | 
| 581 | 
            -
                    # Normalize latents across the channel dimension [B, C, F, H, W]
         | 
| 582 | 
            -
                    latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
         | 
| 583 | 
            -
                    latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
         | 
| 584 | 
            -
                    latents = (latents - latents_mean) * scaling_factor / latents_std
         | 
| 585 | 
            -
                    return latents
         | 
| 586 | 
            -
             | 
| 587 | 
            -
                @staticmethod
         | 
| 588 | 
            -
                # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
         | 
| 589 | 
            -
                def _denormalize_latents(
         | 
| 590 | 
            -
                    latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
         | 
| 591 | 
            -
                ) -> torch.Tensor:
         | 
| 592 | 
            -
                    # Denormalize latents across the channel dimension [B, C, F, H, W]
         | 
| 593 | 
            -
                    latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
         | 
| 594 | 
            -
                    latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
         | 
| 595 | 
            -
                    latents = latents * latents_std / scaling_factor + latents_mean
         | 
| 596 | 
            -
                    return latents
         | 
| 597 | 
            -
             | 
| 598 | 
            -
                def trim_conditioning_sequence(self, start_frame: int, sequence_num_frames: int, target_num_frames: int):
         | 
| 599 | 
            -
                    """
         | 
| 600 | 
            -
                    Trim a conditioning sequence to the allowed number of frames.
         | 
| 601 | 
            -
             | 
| 602 | 
            -
                    Args:
         | 
| 603 | 
            -
                        start_frame (int): The target frame number of the first frame in the sequence.
         | 
| 604 | 
            -
                        sequence_num_frames (int): The number of frames in the sequence.
         | 
| 605 | 
            -
                        target_num_frames (int): The target number of frames in the generated video.
         | 
| 606 | 
            -
                    Returns:
         | 
| 607 | 
            -
                        int: updated sequence length
         | 
| 608 | 
            -
                    """
         | 
| 609 | 
            -
                    scale_factor = self.vae_temporal_compression_ratio
         | 
| 610 | 
            -
                    num_frames = min(sequence_num_frames, target_num_frames - start_frame)
         | 
| 611 | 
            -
                    # Trim down to a multiple of temporal_scale_factor frames plus 1
         | 
| 612 | 
            -
                    num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
         | 
| 613 | 
            -
                    return num_frames
         | 
| 614 | 
            -
             | 
| 615 | 
            -
                @staticmethod
         | 
| 616 | 
            -
                def add_noise_to_image_conditioning_latents(
         | 
| 617 | 
            -
                    t: float,
         | 
| 618 | 
            -
                    init_latents: torch.Tensor,
         | 
| 619 | 
            -
                    latents: torch.Tensor,
         | 
| 620 | 
            -
                    noise_scale: float,
         | 
| 621 | 
            -
                    conditioning_mask: torch.Tensor,
         | 
| 622 | 
            -
                    generator,
         | 
| 623 | 
            -
                    eps=1e-6,
         | 
| 624 | 
            -
                ):
         | 
| 625 | 
            -
                    """
         | 
| 626 | 
            -
                    Add timestep-dependent noise to the hard-conditioning latents. This helps with motion continuity, especially
         | 
| 627 | 
            -
                    when conditioned on a single frame.
         | 
| 628 | 
            -
                    """
         | 
| 629 | 
            -
                    noise = randn_tensor(
         | 
| 630 | 
            -
                        latents.shape,
         | 
| 631 | 
            -
                        generator=generator,
         | 
| 632 | 
            -
                        device=latents.device,
         | 
| 633 | 
            -
                        dtype=latents.dtype,
         | 
| 634 | 
            -
                    )
         | 
| 635 | 
            -
                    # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
         | 
| 636 | 
            -
                    need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
         | 
| 637 | 
            -
                    noised_latents = init_latents + noise_scale * noise * (t**2)
         | 
| 638 | 
            -
                    latents = torch.where(need_to_noise, noised_latents, latents)
         | 
| 639 | 
            -
                    return latents
         | 
| 640 | 
            -
             | 
| 641 | 
            -
                def prepare_latents(
         | 
| 642 | 
            -
                    self,
         | 
| 643 | 
            -
                    conditions: Optional[List[torch.Tensor]] = None,
         | 
| 644 | 
            -
                    condition_strength: Optional[List[float]] = None,
         | 
| 645 | 
            -
                    condition_frame_index: Optional[List[int]] = None,
         | 
| 646 | 
            -
                    batch_size: int = 1,
         | 
| 647 | 
            -
                    num_channels_latents: int = 128,
         | 
| 648 | 
            -
                    height: int = 512,
         | 
| 649 | 
            -
                    width: int = 704,
         | 
| 650 | 
            -
                    num_frames: int = 161,
         | 
| 651 | 
            -
                    num_prefix_latent_frames: int = 2,
         | 
| 652 | 
            -
                    generator: Optional[torch.Generator] = None,
         | 
| 653 | 
            -
                    device: Optional[torch.device] = None,
         | 
| 654 | 
            -
                    dtype: Optional[torch.dtype] = None,
         | 
| 655 | 
            -
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
         | 
| 656 | 
            -
                    num_latent_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
         | 
| 657 | 
            -
                    latent_height = height // self.vae_spatial_compression_ratio
         | 
| 658 | 
            -
                    latent_width = width // self.vae_spatial_compression_ratio
         | 
| 659 | 
            -
             | 
| 660 | 
            -
                    shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
         | 
| 661 | 
            -
                    latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 662 | 
            -
             | 
| 663 | 
            -
                    if len(conditions) > 0:
         | 
| 664 | 
            -
                        condition_latent_frames_mask = torch.zeros(
         | 
| 665 | 
            -
                            (batch_size, num_latent_frames), device=device, dtype=torch.float32
         | 
| 666 | 
            -
                        )
         | 
| 667 | 
            -
             | 
| 668 | 
            -
                        extra_conditioning_latents = []
         | 
| 669 | 
            -
                        extra_conditioning_video_ids = []
         | 
| 670 | 
            -
                        extra_conditioning_mask = []
         | 
| 671 | 
            -
                        extra_conditioning_num_latents = 0
         | 
| 672 | 
            -
                        for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index):
         | 
| 673 | 
            -
                            condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
         | 
| 674 | 
            -
                            condition_latents = self._normalize_latents(
         | 
| 675 | 
            -
                                condition_latents, self.vae.latents_mean, self.vae.latents_std
         | 
| 676 | 
            -
                            ).to(device, dtype=dtype)
         | 
| 677 | 
            -
             | 
| 678 | 
            -
                            num_data_frames = data.size(2)
         | 
| 679 | 
            -
                            num_cond_frames = condition_latents.size(2)
         | 
| 680 | 
            -
             | 
| 681 | 
            -
                            if frame_index == 0:
         | 
| 682 | 
            -
                                latents[:, :, :num_cond_frames] = torch.lerp(
         | 
| 683 | 
            -
                                    latents[:, :, :num_cond_frames], condition_latents, strength
         | 
| 684 | 
            -
                                )
         | 
| 685 | 
            -
                                condition_latent_frames_mask[:, :num_cond_frames] = strength
         | 
| 686 | 
            -
             | 
| 687 | 
            -
                            else:
         | 
| 688 | 
            -
                                if num_data_frames > 1:
         | 
| 689 | 
            -
                                    if num_cond_frames < num_prefix_latent_frames:
         | 
| 690 | 
            -
                                        raise ValueError(
         | 
| 691 | 
            -
                                            f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
         | 
| 692 | 
            -
                                        )
         | 
| 693 | 
            -
             | 
| 694 | 
            -
                                    if num_cond_frames > num_prefix_latent_frames:
         | 
| 695 | 
            -
                                        start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
         | 
| 696 | 
            -
                                        end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
         | 
| 697 | 
            -
                                        latents[:, :, start_frame:end_frame] = torch.lerp(
         | 
| 698 | 
            -
                                            latents[:, :, start_frame:end_frame],
         | 
| 699 | 
            -
                                            condition_latents[:, :, num_prefix_latent_frames:],
         | 
| 700 | 
            -
                                            strength,
         | 
| 701 | 
            -
                                        )
         | 
| 702 | 
            -
                                        condition_latent_frames_mask[:, start_frame:end_frame] = strength
         | 
| 703 | 
            -
                                        condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
         | 
| 704 | 
            -
             | 
| 705 | 
            -
                                noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
         | 
| 706 | 
            -
                                condition_latents = torch.lerp(noise, condition_latents, strength)
         | 
| 707 | 
            -
             | 
| 708 | 
            -
                                condition_video_ids = self._prepare_video_ids(
         | 
| 709 | 
            -
                                    batch_size,
         | 
| 710 | 
            -
                                    condition_latents.size(2),
         | 
| 711 | 
            -
                                    latent_height,
         | 
| 712 | 
            -
                                    latent_width,
         | 
| 713 | 
            -
                                    patch_size=self.transformer_spatial_patch_size,
         | 
| 714 | 
            -
                                    patch_size_t=self.transformer_temporal_patch_size,
         | 
| 715 | 
            -
                                    device=device,
         | 
| 716 | 
            -
                                )
         | 
| 717 | 
            -
                                condition_video_ids = self._scale_video_ids(
         | 
| 718 | 
            -
                                    condition_video_ids,
         | 
| 719 | 
            -
                                    scale_factor=self.vae_spatial_compression_ratio,
         | 
| 720 | 
            -
                                    scale_factor_t=self.vae_temporal_compression_ratio,
         | 
| 721 | 
            -
                                    frame_index=frame_index,
         | 
| 722 | 
            -
                                    device=device,
         | 
| 723 | 
            -
                                )
         | 
| 724 | 
            -
                                condition_latents = self._pack_latents(
         | 
| 725 | 
            -
                                    condition_latents,
         | 
| 726 | 
            -
                                    self.transformer_spatial_patch_size,
         | 
| 727 | 
            -
                                    self.transformer_temporal_patch_size,
         | 
| 728 | 
            -
                                )
         | 
| 729 | 
            -
                                condition_conditioning_mask = torch.full(
         | 
| 730 | 
            -
                                    condition_latents.shape[:2], strength, device=device, dtype=dtype
         | 
| 731 | 
            -
                                )
         | 
| 732 | 
            -
             | 
| 733 | 
            -
                                extra_conditioning_latents.append(condition_latents)
         | 
| 734 | 
            -
                                extra_conditioning_video_ids.append(condition_video_ids)
         | 
| 735 | 
            -
                                extra_conditioning_mask.append(condition_conditioning_mask)
         | 
| 736 | 
            -
                                extra_conditioning_num_latents += condition_latents.size(1)
         | 
| 737 | 
            -
             | 
| 738 | 
            -
                    video_ids = self._prepare_video_ids(
         | 
| 739 | 
            -
                        batch_size,
         | 
| 740 | 
            -
                        num_latent_frames,
         | 
| 741 | 
            -
                        latent_height,
         | 
| 742 | 
            -
                        latent_width,
         | 
| 743 | 
            -
                        patch_size_t=self.transformer_temporal_patch_size,
         | 
| 744 | 
            -
                        patch_size=self.transformer_spatial_patch_size,
         | 
| 745 | 
            -
                        device=device,
         | 
| 746 | 
            -
                    )
         | 
| 747 | 
            -
                    if len(conditions) > 0:
         | 
| 748 | 
            -
                        conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
         | 
| 749 | 
            -
                    else:
         | 
| 750 | 
            -
                        conditioning_mask, extra_conditioning_num_latents = None, 0
         | 
| 751 | 
            -
                    video_ids = self._scale_video_ids(
         | 
| 752 | 
            -
                        video_ids,
         | 
| 753 | 
            -
                        scale_factor=self.vae_spatial_compression_ratio,
         | 
| 754 | 
            -
                        scale_factor_t=self.vae_temporal_compression_ratio,
         | 
| 755 | 
            -
                        frame_index=0,
         | 
| 756 | 
            -
                        device=device,
         | 
| 757 | 
            -
                    )
         | 
| 758 | 
            -
                    latents = self._pack_latents(
         | 
| 759 | 
            -
                        latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
         | 
| 760 | 
            -
                    )
         | 
| 761 | 
            -
             | 
| 762 | 
            -
                    if len(conditions) > 0 and len(extra_conditioning_latents) > 0:
         | 
| 763 | 
            -
                        latents = torch.cat([*extra_conditioning_latents, latents], dim=1)
         | 
| 764 | 
            -
                        video_ids = torch.cat([*extra_conditioning_video_ids, video_ids], dim=2)
         | 
| 765 | 
            -
                        conditioning_mask = torch.cat([*extra_conditioning_mask, conditioning_mask], dim=1)
         | 
| 766 | 
            -
             | 
| 767 | 
            -
                    return latents, conditioning_mask, video_ids, extra_conditioning_num_latents
         | 
| 768 | 
            -
             | 
| 769 | 
            -
                @property
         | 
| 770 | 
            -
                def guidance_scale(self):
         | 
| 771 | 
            -
                    return self._guidance_scale
         | 
| 772 | 
            -
             | 
| 773 | 
            -
                @property
         | 
| 774 | 
            -
                def do_classifier_free_guidance(self):
         | 
| 775 | 
            -
                    return self._guidance_scale > 1.0
         | 
| 776 | 
            -
             | 
| 777 | 
            -
                @property
         | 
| 778 | 
            -
                def num_timesteps(self):
         | 
| 779 | 
            -
                    return self._num_timesteps
         | 
| 780 | 
            -
             | 
| 781 | 
            -
                @property
         | 
| 782 | 
            -
                def current_timestep(self):
         | 
| 783 | 
            -
                    return self._current_timestep
         | 
| 784 | 
            -
             | 
| 785 | 
            -
                @property
         | 
| 786 | 
            -
                def attention_kwargs(self):
         | 
| 787 | 
            -
                    return self._attention_kwargs
         | 
| 788 | 
            -
             | 
| 789 | 
            -
                @property
         | 
| 790 | 
            -
                def interrupt(self):
         | 
| 791 | 
            -
                    return self._interrupt
         | 
| 792 | 
            -
             | 
| 793 | 
            -
                @torch.no_grad()
         | 
| 794 | 
            -
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 795 | 
            -
                def __call__(
         | 
| 796 | 
            -
                    self,
         | 
| 797 | 
            -
                    conditions: Union[LTXVideoCondition, List[LTXVideoCondition]] = None,
         | 
| 798 | 
            -
                    image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
         | 
| 799 | 
            -
                    video: List[PipelineImageInput] = None,
         | 
| 800 | 
            -
                    frame_index: Union[int, List[int]] = 0,
         | 
| 801 | 
            -
                    strength: Union[float, List[float]] = 1.0,
         | 
| 802 | 
            -
                    prompt: Union[str, List[str]] = None,
         | 
| 803 | 
            -
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 804 | 
            -
                    height: int = 512,
         | 
| 805 | 
            -
                    width: int = 704,
         | 
| 806 | 
            -
                    num_frames: int = 161,
         | 
| 807 | 
            -
                    frame_rate: int = 25,
         | 
| 808 | 
            -
                    num_inference_steps: int = 50,
         | 
| 809 | 
            -
                    timesteps: List[int] = None,
         | 
| 810 | 
            -
                    guidance_scale: float = 3,
         | 
| 811 | 
            -
                    image_cond_noise_scale: float = 0.15,
         | 
| 812 | 
            -
                    num_videos_per_prompt: Optional[int] = 1,
         | 
| 813 | 
            -
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 814 | 
            -
                    latents: Optional[torch.Tensor] = None,
         | 
| 815 | 
            -
                    prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 816 | 
            -
                    prompt_attention_mask: Optional[torch.Tensor] = None,
         | 
| 817 | 
            -
                    negative_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 818 | 
            -
                    negative_prompt_attention_mask: Optional[torch.Tensor] = None,
         | 
| 819 | 
            -
                    decode_timestep: Union[float, List[float]] = 0.0,
         | 
| 820 | 
            -
                    decode_noise_scale: Optional[Union[float, List[float]]] = None,
         | 
| 821 | 
            -
                    output_type: Optional[str] = "pil",
         | 
| 822 | 
            -
                    return_dict: bool = True,
         | 
| 823 | 
            -
                    attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 824 | 
            -
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 825 | 
            -
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 826 | 
            -
                    max_sequence_length: int = 256,
         | 
| 827 | 
            -
                ):
         | 
| 828 | 
            -
                    r"""
         | 
| 829 | 
            -
                    Function invoked when calling the pipeline for generation.
         | 
| 830 | 
            -
             | 
| 831 | 
            -
                    Args:
         | 
| 832 | 
            -
                        conditions (`List[LTXVideoCondition], *optional*`):
         | 
| 833 | 
            -
                            The list of frame-conditioning items for the video generation.If not provided, conditions will be
         | 
| 834 | 
            -
                            created using `image`, `video`, `frame_index` and `strength`.
         | 
| 835 | 
            -
                        image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
         | 
| 836 | 
            -
                            The image or images to condition the video generation. If not provided, one has to pass `video` or
         | 
| 837 | 
            -
                            `conditions`.
         | 
| 838 | 
            -
                        video (`List[PipelineImageInput]`, *optional*):
         | 
| 839 | 
            -
                            The video to condition the video generation. If not provided, one has to pass `image` or `conditions`.
         | 
| 840 | 
            -
                        frame_index (`int` or `List[int]`, *optional*):
         | 
| 841 | 
            -
                            The frame index or frame indices at which the image or video will conditionally effect the video
         | 
| 842 | 
            -
                            generation. If not provided, one has to pass `conditions`.
         | 
| 843 | 
            -
                        strength (`float` or `List[float]`, *optional*):
         | 
| 844 | 
            -
                            The strength or strengths of the conditioning effect. If not provided, one has to pass `conditions`.
         | 
| 845 | 
            -
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 846 | 
            -
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 847 | 
            -
                            instead.
         | 
| 848 | 
            -
                        height (`int`, defaults to `512`):
         | 
| 849 | 
            -
                            The height in pixels of the generated image. This is set to 480 by default for the best results.
         | 
| 850 | 
            -
                        width (`int`, defaults to `704`):
         | 
| 851 | 
            -
                            The width in pixels of the generated image. This is set to 848 by default for the best results.
         | 
| 852 | 
            -
                        num_frames (`int`, defaults to `161`):
         | 
| 853 | 
            -
                            The number of video frames to generate
         | 
| 854 | 
            -
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 855 | 
            -
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 856 | 
            -
                            expense of slower inference.
         | 
| 857 | 
            -
                        timesteps (`List[int]`, *optional*):
         | 
| 858 | 
            -
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         | 
| 859 | 
            -
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         | 
| 860 | 
            -
                            passed will be used. Must be in descending order.
         | 
| 861 | 
            -
                        guidance_scale (`float`, defaults to `3 `):
         | 
| 862 | 
            -
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 863 | 
            -
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 864 | 
            -
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 865 | 
            -
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 866 | 
            -
                            usually at the expense of lower image quality.
         | 
| 867 | 
            -
                        num_videos_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 868 | 
            -
                            The number of videos to generate per prompt.
         | 
| 869 | 
            -
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 870 | 
            -
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 871 | 
            -
                            to make generation deterministic.
         | 
| 872 | 
            -
                        latents (`torch.Tensor`, *optional*):
         | 
| 873 | 
            -
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 874 | 
            -
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 875 | 
            -
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 876 | 
            -
                        prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 877 | 
            -
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 878 | 
            -
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 879 | 
            -
                        prompt_attention_mask (`torch.Tensor`, *optional*):
         | 
| 880 | 
            -
                            Pre-generated attention mask for text embeddings.
         | 
| 881 | 
            -
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 882 | 
            -
                            Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
         | 
| 883 | 
            -
                            provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
         | 
| 884 | 
            -
                        negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 885 | 
            -
                            Pre-generated attention mask for negative text embeddings.
         | 
| 886 | 
            -
                        decode_timestep (`float`, defaults to `0.0`):
         | 
| 887 | 
            -
                            The timestep at which generated video is decoded.
         | 
| 888 | 
            -
                        decode_noise_scale (`float`, defaults to `None`):
         | 
| 889 | 
            -
                            The interpolation factor between random noise and denoised latents at the decode timestep.
         | 
| 890 | 
            -
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 891 | 
            -
                            The output format of the generate image. Choose between
         | 
| 892 | 
            -
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 893 | 
            -
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 894 | 
            -
                            Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
         | 
| 895 | 
            -
                        attention_kwargs (`dict`, *optional*):
         | 
| 896 | 
            -
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 897 | 
            -
                            `self.processor` in
         | 
| 898 | 
            -
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 899 | 
            -
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 900 | 
            -
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 901 | 
            -
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 902 | 
            -
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 903 | 
            -
                            `callback_on_step_end_tensor_inputs`.
         | 
| 904 | 
            -
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 905 | 
            -
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 906 | 
            -
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 907 | 
            -
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 908 | 
            -
                        max_sequence_length (`int` defaults to `128 `):
         | 
| 909 | 
            -
                            Maximum sequence length to use with the `prompt`.
         | 
| 910 | 
            -
             | 
| 911 | 
            -
                    Examples:
         | 
| 912 | 
            -
             | 
| 913 | 
            -
                    Returns:
         | 
| 914 | 
            -
                        [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
         | 
| 915 | 
            -
                            If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
         | 
| 916 | 
            -
                            returned where the first element is a list with the generated images.
         | 
| 917 | 
            -
                    """
         | 
| 918 | 
            -
             | 
| 919 | 
            -
                    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
         | 
| 920 | 
            -
                        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
         | 
| 921 | 
            -
                    if latents is not None:
         | 
| 922 | 
            -
                        raise ValueError("Passing latents is not yet supported.")
         | 
| 923 | 
            -
             | 
| 924 | 
            -
                    # 1. Check inputs. Raise error if not correct
         | 
| 925 | 
            -
                    self.check_inputs(
         | 
| 926 | 
            -
                        prompt=prompt,
         | 
| 927 | 
            -
                        conditions=conditions,
         | 
| 928 | 
            -
                        image=image,
         | 
| 929 | 
            -
                        video=video,
         | 
| 930 | 
            -
                        frame_index=frame_index,
         | 
| 931 | 
            -
                        strength=strength,
         | 
| 932 | 
            -
                        height=height,
         | 
| 933 | 
            -
                        width=width,
         | 
| 934 | 
            -
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         | 
| 935 | 
            -
                        prompt_embeds=prompt_embeds,
         | 
| 936 | 
            -
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 937 | 
            -
                        prompt_attention_mask=prompt_attention_mask,
         | 
| 938 | 
            -
                        negative_prompt_attention_mask=negative_prompt_attention_mask,
         | 
| 939 | 
            -
                    )
         | 
| 940 | 
            -
             | 
| 941 | 
            -
                    self._guidance_scale = guidance_scale
         | 
| 942 | 
            -
                    self._attention_kwargs = attention_kwargs
         | 
| 943 | 
            -
                    self._interrupt = False
         | 
| 944 | 
            -
                    self._current_timestep = None
         | 
| 945 | 
            -
             | 
| 946 | 
            -
                    # 2. Define call parameters
         | 
| 947 | 
            -
                    if prompt is not None and isinstance(prompt, str):
         | 
| 948 | 
            -
                        batch_size = 1
         | 
| 949 | 
            -
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 950 | 
            -
                        batch_size = len(prompt)
         | 
| 951 | 
            -
                    else:
         | 
| 952 | 
            -
                        batch_size = prompt_embeds.shape[0]
         | 
| 953 | 
            -
             | 
| 954 | 
            -
                    if conditions is not None:
         | 
| 955 | 
            -
                        if not isinstance(conditions, list):
         | 
| 956 | 
            -
                            conditions = [conditions]
         | 
| 957 | 
            -
             | 
| 958 | 
            -
                        strength = [condition.strength for condition in conditions]
         | 
| 959 | 
            -
                        frame_index = [condition.frame_index for condition in conditions]
         | 
| 960 | 
            -
                        image = [condition.image for condition in conditions]
         | 
| 961 | 
            -
                        video = [condition.video for condition in conditions]
         | 
| 962 | 
            -
                    elif image is not None or video is not None:
         | 
| 963 | 
            -
                        if not isinstance(image, list):
         | 
| 964 | 
            -
                            image = [image]
         | 
| 965 | 
            -
                            num_conditions = 1
         | 
| 966 | 
            -
                        elif isinstance(image, list):
         | 
| 967 | 
            -
                            num_conditions = len(image)
         | 
| 968 | 
            -
                        if not isinstance(video, list):
         | 
| 969 | 
            -
                            video = [video]
         | 
| 970 | 
            -
                            num_conditions = 1
         | 
| 971 | 
            -
                        elif isinstance(video, list):
         | 
| 972 | 
            -
                            num_conditions = len(video)
         | 
| 973 | 
            -
             | 
| 974 | 
            -
                        if not isinstance(frame_index, list):
         | 
| 975 | 
            -
                            frame_index = [frame_index] * num_conditions
         | 
| 976 | 
            -
                        if not isinstance(strength, list):
         | 
| 977 | 
            -
                            strength = [strength] * num_conditions
         | 
| 978 | 
            -
             | 
| 979 | 
            -
                    device = self._execution_device
         | 
| 980 | 
            -
             | 
| 981 | 
            -
                    # 3. Prepare text embeddings
         | 
| 982 | 
            -
                    (
         | 
| 983 | 
            -
                        prompt_embeds,
         | 
| 984 | 
            -
                        prompt_attention_mask,
         | 
| 985 | 
            -
                        negative_prompt_embeds,
         | 
| 986 | 
            -
                        negative_prompt_attention_mask,
         | 
| 987 | 
            -
                    ) = self.encode_prompt(
         | 
| 988 | 
            -
                        prompt=prompt,
         | 
| 989 | 
            -
                        negative_prompt=negative_prompt,
         | 
| 990 | 
            -
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 991 | 
            -
                        num_videos_per_prompt=num_videos_per_prompt,
         | 
| 992 | 
            -
                        prompt_embeds=prompt_embeds,
         | 
| 993 | 
            -
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 994 | 
            -
                        prompt_attention_mask=prompt_attention_mask,
         | 
| 995 | 
            -
                        negative_prompt_attention_mask=negative_prompt_attention_mask,
         | 
| 996 | 
            -
                        max_sequence_length=max_sequence_length,
         | 
| 997 | 
            -
                        device=device,
         | 
| 998 | 
            -
                    )
         | 
| 999 | 
            -
                    if self.do_classifier_free_guidance:
         | 
| 1000 | 
            -
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 1001 | 
            -
                        prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
         | 
| 1002 | 
            -
             | 
| 1003 | 
            -
                    vae_dtype = self.vae.dtype
         | 
| 1004 | 
            -
             | 
| 1005 | 
            -
                    conditioning_tensors = []
         | 
| 1006 | 
            -
                    is_conditioning_image_or_video = image is not None or video is not None
         | 
| 1007 | 
            -
                    if is_conditioning_image_or_video:
         | 
| 1008 | 
            -
                        for condition_image, condition_video, condition_frame_index, condition_strength in zip(
         | 
| 1009 | 
            -
                            image, video, frame_index, strength
         | 
| 1010 | 
            -
                        ):
         | 
| 1011 | 
            -
                            if condition_image is not None:
         | 
| 1012 | 
            -
                                condition_tensor = (
         | 
| 1013 | 
            -
                                    self.video_processor.preprocess(condition_image, height, width)
         | 
| 1014 | 
            -
                                    .unsqueeze(2)
         | 
| 1015 | 
            -
                                    .to(device, dtype=vae_dtype)
         | 
| 1016 | 
            -
                                )
         | 
| 1017 | 
            -
                            elif condition_video is not None:
         | 
| 1018 | 
            -
                                condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
         | 
| 1019 | 
            -
                                num_frames_input = condition_tensor.size(2)
         | 
| 1020 | 
            -
                                num_frames_output = self.trim_conditioning_sequence(
         | 
| 1021 | 
            -
                                    condition_frame_index, num_frames_input, num_frames
         | 
| 1022 | 
            -
                                )
         | 
| 1023 | 
            -
                                condition_tensor = condition_tensor[:, :, :num_frames_output]
         | 
| 1024 | 
            -
                                condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
         | 
| 1025 | 
            -
                            else:
         | 
| 1026 | 
            -
                                raise ValueError("Either `image` or `video` must be provided for conditioning.")
         | 
| 1027 | 
            -
             | 
| 1028 | 
            -
                            if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
         | 
| 1029 | 
            -
                                raise ValueError(
         | 
| 1030 | 
            -
                                    f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
         | 
| 1031 | 
            -
                                    f"but got {condition_tensor.size(2)} frames."
         | 
| 1032 | 
            -
                                )
         | 
| 1033 | 
            -
                            conditioning_tensors.append(condition_tensor)
         | 
| 1034 | 
            -
             | 
| 1035 | 
            -
                    # 4. Prepare latent variables
         | 
| 1036 | 
            -
                    num_channels_latents = self.transformer.config.in_channels
         | 
| 1037 | 
            -
                    latents, conditioning_mask, video_coords, extra_conditioning_num_latents = self.prepare_latents(
         | 
| 1038 | 
            -
                        conditioning_tensors,
         | 
| 1039 | 
            -
                        strength,
         | 
| 1040 | 
            -
                        frame_index,
         | 
| 1041 | 
            -
                        batch_size=batch_size * num_videos_per_prompt,
         | 
| 1042 | 
            -
                        num_channels_latents=num_channels_latents,
         | 
| 1043 | 
            -
                        height=height,
         | 
| 1044 | 
            -
                        width=width,
         | 
| 1045 | 
            -
                        num_frames=num_frames,
         | 
| 1046 | 
            -
                        generator=generator,
         | 
| 1047 | 
            -
                        device=device,
         | 
| 1048 | 
            -
                        dtype=torch.float32,
         | 
| 1049 | 
            -
                    )
         | 
| 1050 | 
            -
             | 
| 1051 | 
            -
                    video_coords = video_coords.float()
         | 
| 1052 | 
            -
                    video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
         | 
| 1053 | 
            -
             | 
| 1054 | 
            -
                    init_latents = latents.clone() if is_conditioning_image_or_video else None
         | 
| 1055 | 
            -
             | 
| 1056 | 
            -
                    if self.do_classifier_free_guidance:
         | 
| 1057 | 
            -
                        video_coords = torch.cat([video_coords, video_coords], dim=0)
         | 
| 1058 | 
            -
             | 
| 1059 | 
            -
                    # 5. Prepare timesteps
         | 
| 1060 | 
            -
                    latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
         | 
| 1061 | 
            -
                    latent_height = height // self.vae_spatial_compression_ratio
         | 
| 1062 | 
            -
                    latent_width = width // self.vae_spatial_compression_ratio
         | 
| 1063 | 
            -
                    sigmas = linear_quadratic_schedule(num_inference_steps)
         | 
| 1064 | 
            -
                    timesteps = sigmas * 1000
         | 
| 1065 | 
            -
                    timesteps, num_inference_steps = retrieve_timesteps(
         | 
| 1066 | 
            -
                        self.scheduler,
         | 
| 1067 | 
            -
                        num_inference_steps,
         | 
| 1068 | 
            -
                        device,
         | 
| 1069 | 
            -
                        timesteps=timesteps,
         | 
| 1070 | 
            -
                    )
         | 
| 1071 | 
            -
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 1072 | 
            -
                    self._num_timesteps = len(timesteps)
         | 
| 1073 | 
            -
             | 
| 1074 | 
            -
                    # 6. Denoising loop
         | 
| 1075 | 
            -
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1076 | 
            -
                        for i, t in enumerate(timesteps):
         | 
| 1077 | 
            -
                            if self.interrupt:
         | 
| 1078 | 
            -
                                continue
         | 
| 1079 | 
            -
             | 
| 1080 | 
            -
                            self._current_timestep = t
         | 
| 1081 | 
            -
             | 
| 1082 | 
            -
                            if image_cond_noise_scale > 0 and init_latents is not None:
         | 
| 1083 | 
            -
                                # Add timestep-dependent noise to the hard-conditioning latents
         | 
| 1084 | 
            -
                                # This helps with motion continuity, especially when conditioned on a single frame
         | 
| 1085 | 
            -
                                latents = self.add_noise_to_image_conditioning_latents(
         | 
| 1086 | 
            -
                                    t / 1000.0,
         | 
| 1087 | 
            -
                                    init_latents,
         | 
| 1088 | 
            -
                                    latents,
         | 
| 1089 | 
            -
                                    image_cond_noise_scale,
         | 
| 1090 | 
            -
                                    conditioning_mask,
         | 
| 1091 | 
            -
                                    generator,
         | 
| 1092 | 
            -
                                )
         | 
| 1093 | 
            -
             | 
| 1094 | 
            -
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 1095 | 
            -
                            if is_conditioning_image_or_video:
         | 
| 1096 | 
            -
                                conditioning_mask_model_input = (
         | 
| 1097 | 
            -
                                    torch.cat([conditioning_mask, conditioning_mask])
         | 
| 1098 | 
            -
                                    if self.do_classifier_free_guidance
         | 
| 1099 | 
            -
                                    else conditioning_mask
         | 
| 1100 | 
            -
                                )
         | 
| 1101 | 
            -
                            latent_model_input = latent_model_input.to(prompt_embeds.dtype)
         | 
| 1102 | 
            -
             | 
| 1103 | 
            -
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 1104 | 
            -
                            timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
         | 
| 1105 | 
            -
                            if is_conditioning_image_or_video:
         | 
| 1106 | 
            -
                                timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
         | 
| 1107 | 
            -
             | 
| 1108 | 
            -
                            noise_pred = self.transformer(
         | 
| 1109 | 
            -
                                hidden_states=latent_model_input,
         | 
| 1110 | 
            -
                                encoder_hidden_states=prompt_embeds,
         | 
| 1111 | 
            -
                                timestep=timestep,
         | 
| 1112 | 
            -
                                encoder_attention_mask=prompt_attention_mask,
         | 
| 1113 | 
            -
                                video_coords=video_coords,
         | 
| 1114 | 
            -
                                attention_kwargs=attention_kwargs,
         | 
| 1115 | 
            -
                                return_dict=False,
         | 
| 1116 | 
            -
                            )[0]
         | 
| 1117 | 
            -
             | 
| 1118 | 
            -
                            if self.do_classifier_free_guidance:
         | 
| 1119 | 
            -
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1120 | 
            -
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1121 | 
            -
                                timestep, _ = timestep.chunk(2)
         | 
| 1122 | 
            -
             | 
| 1123 | 
            -
                            denoised_latents = self.scheduler.step(
         | 
| 1124 | 
            -
                                -noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
         | 
| 1125 | 
            -
                            )[0]
         | 
| 1126 | 
            -
                            if is_conditioning_image_or_video:
         | 
| 1127 | 
            -
                                tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
         | 
| 1128 | 
            -
                                latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
         | 
| 1129 | 
            -
                            else:
         | 
| 1130 | 
            -
                                latents = denoised_latents
         | 
| 1131 | 
            -
             | 
| 1132 | 
            -
                            if callback_on_step_end is not None:
         | 
| 1133 | 
            -
                                callback_kwargs = {}
         | 
| 1134 | 
            -
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1135 | 
            -
                                    callback_kwargs[k] = locals()[k]
         | 
| 1136 | 
            -
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1137 | 
            -
             | 
| 1138 | 
            -
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1139 | 
            -
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1140 | 
            -
             | 
| 1141 | 
            -
                            # call the callback, if provided
         | 
| 1142 | 
            -
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1143 | 
            -
                                progress_bar.update()
         | 
| 1144 | 
            -
             | 
| 1145 | 
            -
                            if XLA_AVAILABLE:
         | 
| 1146 | 
            -
                                xm.mark_step()
         | 
| 1147 | 
            -
             | 
| 1148 | 
            -
                    if is_conditioning_image_or_video:
         | 
| 1149 | 
            -
                        latents = latents[:, extra_conditioning_num_latents:]
         | 
| 1150 | 
            -
             | 
| 1151 | 
            -
                    latents = self._unpack_latents(
         | 
| 1152 | 
            -
                        latents,
         | 
| 1153 | 
            -
                        latent_num_frames,
         | 
| 1154 | 
            -
                        latent_height,
         | 
| 1155 | 
            -
                        latent_width,
         | 
| 1156 | 
            -
                        self.transformer_spatial_patch_size,
         | 
| 1157 | 
            -
                        self.transformer_temporal_patch_size,
         | 
| 1158 | 
            -
                    )
         | 
| 1159 | 
            -
             | 
| 1160 | 
            -
                    if output_type == "latent":
         | 
| 1161 | 
            -
                        video = latents
         | 
| 1162 | 
            -
                    else:
         | 
| 1163 | 
            -
                        latents = self._denormalize_latents(
         | 
| 1164 | 
            -
                            latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
         | 
| 1165 | 
            -
                        )
         | 
| 1166 | 
            -
                        latents = latents.to(prompt_embeds.dtype)
         | 
| 1167 | 
            -
             | 
| 1168 | 
            -
                        if not self.vae.config.timestep_conditioning:
         | 
| 1169 | 
            -
                            timestep = None
         | 
| 1170 | 
            -
                        else:
         | 
| 1171 | 
            -
                            noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
         | 
| 1172 | 
            -
                            if not isinstance(decode_timestep, list):
         | 
| 1173 | 
            -
                                decode_timestep = [decode_timestep] * batch_size
         | 
| 1174 | 
            -
                            if decode_noise_scale is None:
         | 
| 1175 | 
            -
                                decode_noise_scale = decode_timestep
         | 
| 1176 | 
            -
                            elif not isinstance(decode_noise_scale, list):
         | 
| 1177 | 
            -
                                decode_noise_scale = [decode_noise_scale] * batch_size
         | 
| 1178 | 
            -
             | 
| 1179 | 
            -
                            timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
         | 
| 1180 | 
            -
                            decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
         | 
| 1181 | 
            -
                                :, None, None, None, None
         | 
| 1182 | 
            -
                            ]
         | 
| 1183 | 
            -
                            latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
         | 
| 1184 | 
            -
             | 
| 1185 | 
            -
                        video = self.vae.decode(latents, timestep, return_dict=False)[0]
         | 
| 1186 | 
            -
                        video = self.video_processor.postprocess_video(video, output_type=output_type)
         | 
| 1187 | 
            -
             | 
| 1188 | 
            -
                    # Offload all models
         | 
| 1189 | 
            -
                    self.maybe_free_model_hooks()
         | 
| 1190 | 
            -
             | 
| 1191 | 
            -
                    if not return_dict:
         | 
| 1192 | 
            -
                        return (video,)
         | 
| 1193 | 
            -
             | 
| 1194 | 
            -
                    return LTXPipelineOutput(frames=video)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
 
			

