from sentence_transformers import SentenceTransformer from transformers import pipeline from langchain_core.prompts import ChatPromptTemplate from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, SequentialChain from langchain_groq import ChatGroq from langchain_community.embeddings import HuggingFaceEmbeddings from dotenv import load_dotenv import os load_dotenv() api_key = os.getenv('GROQ_API_KEY') # print(api_key) class LearningPathModel: def __init__(self): # Initialize embedding and NLP models self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2') self.qa_pipeline = pipeline('question-answering', model='distilbert-base-cased-distilled-squad') self.summarizer = pipeline('summarization', model='facebook/bart-large-cnn') # Define LangChain elements self.embedding_chain = LLMChain( llm=ChatGroq(model_name="llama-3.1-70b-versatile"), # Example: replace with Groq LLM chain if needed prompt=PromptTemplate(template="Generate an embedding for the following text: {text}", input_variables=["text"]) ) self.qa_chain = LLMChain( llm=ChatGroq(model_name="llama-3.1-70b-versatile"), prompt=PromptTemplate(template="Based on the context provided, answer the question: {question}. Context: {context}", input_variables=["question", "context"]) ) self.summarization_chain = LLMChain( llm=ChatGroq(model_name="llama-3.1-70b-versatile"), prompt=PromptTemplate(template="Summarize the following text: {text}", input_variables=["text"]) ) # Combine chains into a sequential chain self.sequential_chain = SequentialChain(chains=[self.embedding_chain, self.qa_chain, self.summarization_chain], input_variables=['text', 'question', 'context']) def generate_embeddings(self, content_list): # Generate embeddings for a list of content items embeddings = [self.embedding_model.encode(content) for content in content_list] return embeddings def assess_knowledge(self, question, context): # Use the QA pipeline to assess knowledge response = self.qa_pipeline(question=question, context=context) return response['answer'], response['score'] def summarize_content(self, content): # Summarize content using the summarizer chain summary = self.summarizer(content, max_length=60, min_length=30, do_sample=False)[0]['summary_text'] return summary def recommend_learning_path(self, user_input, content_data): # Generate embeddings content_embeddings = self.generate_embeddings([c['description'] for c in content_data]) user_embedding = self.generate_embeddings([user_input])[0] # Simple similarity scoring (cosine similarity) to match user input with content import numpy as np similarities = np.dot(content_embeddings, user_embedding) / (np.linalg.norm(content_embeddings, axis=1) * np.linalg.norm(user_embedding)) # Recommend top 3 most similar content items top_indices = np.argsort(similarities)[-3:][::-1] recommendations = [content_data[i] for i in top_indices] return recommendations