Spaces:
Sleeping
Sleeping
from sentence_transformers import SentenceTransformer | |
from transformers import pipeline | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain, SequentialChain | |
from langchain_groq import ChatGroq | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
api_key = os.getenv('GROQ_API_KEY') | |
# print(api_key) | |
class LearningPathModel: | |
def __init__(self): | |
# Initialize embedding and NLP models | |
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
self.qa_pipeline = pipeline('question-answering', model='distilbert-base-cased-distilled-squad') | |
self.summarizer = pipeline('summarization', model='facebook/bart-large-cnn') | |
# Define LangChain elements | |
self.embedding_chain = LLMChain( | |
llm=ChatGroq(model_name="llama-3.1-70b-versatile"), # Example: replace with Groq LLM chain if needed | |
prompt=PromptTemplate(template="Generate an embedding for the following text: {text}", input_variables=["text"]) | |
) | |
self.qa_chain = LLMChain( | |
llm=ChatGroq(model_name="llama-3.1-70b-versatile"), | |
prompt=PromptTemplate(template="Based on the context provided, answer the question: {question}. Context: {context}", input_variables=["question", "context"]) | |
) | |
self.summarization_chain = LLMChain( | |
llm=ChatGroq(model_name="llama-3.1-70b-versatile"), | |
prompt=PromptTemplate(template="Summarize the following text: {text}", input_variables=["text"]) | |
) | |
# Combine chains into a sequential chain | |
self.sequential_chain = SequentialChain(chains=[self.embedding_chain, self.qa_chain, self.summarization_chain], input_variables=['text', 'question', 'context']) | |
def generate_embeddings(self, content_list): | |
# Generate embeddings for a list of content items | |
embeddings = [self.embedding_model.encode(content) for content in content_list] | |
return embeddings | |
def assess_knowledge(self, question, context): | |
# Use the QA pipeline to assess knowledge | |
response = self.qa_pipeline(question=question, context=context) | |
return response['answer'], response['score'] | |
def summarize_content(self, content): | |
# Summarize content using the summarizer chain | |
summary = self.summarizer(content, max_length=60, min_length=30, do_sample=False)[0]['summary_text'] | |
return summary | |
def recommend_learning_path(self, user_input, content_data): | |
# Generate embeddings | |
content_embeddings = self.generate_embeddings([c['description'] for c in content_data]) | |
user_embedding = self.generate_embeddings([user_input])[0] | |
# Simple similarity scoring (cosine similarity) to match user input with content | |
import numpy as np | |
similarities = np.dot(content_embeddings, user_embedding) / (np.linalg.norm(content_embeddings, axis=1) * np.linalg.norm(user_embedding)) | |
# Recommend top 3 most similar content items | |
top_indices = np.argsort(similarities)[-3:][::-1] | |
recommendations = [content_data[i] for i in top_indices] | |
return recommendations | |