import gradio as gr from transformers import pipeline # Initialize the audio classification pipeline with the MIT model pipe = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593") # Define the function to classify an audio file def classify_audio(audio): result = pipe(audio) return {label['label']: label['score'] for label in result} # Set up the Gradio interface app = gr.Interface( fn=classify_audio, # Function to classify audio inputs=gr.Audio(type="filepath"), # Input for uploading an audio file outputs=gr.Label(num_top_classes=3), # Output with top 3 classification results title="Audio Classification", # App title description="Upload an audio file to classify it using MIT's fine-tuned AudioSet model." ) # Launch the app if __name__ == "__main__": app.launch()