Gamm3_270M_Chat / app.py
ShahzebKhoso's picture
Update app.py
3163adc verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import login
import os
# Use a secret token stored in your Space settings
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Load model and tokenizer
model_name = "google/gemma-3-270m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
# Chat function
def chat_with_gamma(history, message):
inputs = tokenizer.encode(message, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs,
max_length=256,
do_sample=True,
top_p=0.9,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
history.append((message, reply))
return history, ""
# Gradio Chat UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## πŸš€ Chat with Gamma3-270M")
gr.Markdown("Professional demo of **Gamma3 270M**, an open-source LLM.")
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(placeholder="Type your message...")
clear = gr.Button("Clear Chat")
state = gr.State([])
msg.submit(chat_with_gamma, [state, msg], [chatbot, msg])
clear.click(lambda: ([], ""), None, [chatbot, msg])
demo.launch()