Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
def load_model(): | |
model_name = "tiiuae/falcon-7b-instruct" # Replace with the desired Falcon model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", # Automatically assign model layers to available GPUs/CPUs | |
torch_dtype=torch.float16 # Use FP16 for faster inference | |
) | |
return model, tokenizer | |
model, tokenizer = load_model() | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] | |
# Sidebar configuration | |
st.sidebar.title("Chatbot Settings") | |
st.sidebar.write("Customize your chatbot:") | |
max_length = st.sidebar.slider("Max Response Length (Tokens)", 50, 500, 150) | |
temperature = st.sidebar.slider("Response Creativity (Temperature)", 0.1, 1.0, 0.7) | |
# App title | |
st.title("π€ Falcon Chatbot") | |
# Chat interface | |
st.write("### Chat with the bot:") | |
user_input = st.text_input("You:", key="user_input", placeholder="Type your message here...") | |
if user_input: | |
# Add user input to chat history | |
st.session_state["messages"].append(f"User: {user_input}") | |
# Prepare input for the model | |
prompt = "\n".join(st.session_state["messages"]) + f"\nAssistant:" | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device) | |
# Generate response | |
with st.spinner("Thinking..."): | |
output = model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
temperature=temperature, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
bot_response = tokenizer.decode(output[0], skip_special_tokens=True).split("Assistant:")[-1].strip() | |
# Add bot response to chat history | |
st.session_state["messages"].append(f"Assistant: {bot_response}") | |
# Display chat history | |
for msg in st.session_state["messages"]: | |
if msg.startswith("User:"): | |
st.markdown(f"**{msg}**") | |
elif msg.startswith("Assistant:"): | |
st.markdown(f"> {msg}") | |
# Clear chat history button | |
if st.button("Clear Chat"): | |
st.session_state["messages"] = [] | |
st.experimental_rerun() | |