Shafaq25's picture
Create app.py
d1a569b verified
import os
import gradio as gr
from pathlib import Path
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
# Ensure data directory exists
Path("data").mkdir(exist_ok=True)
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
# Global state for engines
state = {"insurance_engine": None, "paul_engine": None, "custom_engine": None}
# Build index from file
def build_index_from_file(file_path):
documents = SimpleDirectoryReader(input_files=[file_path]).load_data()
index = VectorStoreIndex.from_documents(documents)
return index.as_query_engine()
# Preload fixed documents
def preload_indexes():
try:
state["insurance_engine"] = build_index_from_file("data/insurance_FirstRAG.pdf")
except:
print("❌ Failed to load insurance.pdf")
try:
state["paul_engine"] = build_index_from_file("data/paul_graham_FirstRAG.txt")
except:
print("❌ Failed to load paul_graham.txt")
# Upload custom file
def upload_and_refresh(file_path):
if file_path is None:
return "⚠️ No file uploaded."
try:
state["custom_engine"] = build_index_from_file(file_path)
return f"βœ… Uploaded & Indexed: {os.path.basename(file_path)}"
except Exception as e:
return f"❌ Failed: {str(e)}"
# Query helpers
def ask_insurance(query): return _query_engine(state["insurance_engine"], query)
def ask_paul(query): return _query_engine(state["paul_engine"], query)
def ask_custom(query): return _query_engine(state["custom_engine"], query)
def _query_engine(engine, query):
if not query:
return "❗ Please enter a question."
if engine is None:
return "πŸ“‚ Document not loaded yet."
try:
return str(engine.query(query))
except Exception as e:
return f"❌ Error: {str(e)}"
# Summarize
def summarize_insurance(): return _query_engine(state["insurance_engine"], "Summarize the insurance document.")
def summarize_paul(): return _query_engine(state["paul_engine"], "Summarize Paul Graham's main ideas.")
def summarize_custom(): return _query_engine(state["custom_engine"], "Summarize the uploaded documents.")
# Clear
def clear_fields(): return "", ""
# Launch app
def launch():
preload_indexes()
with gr.Blocks(
title="RAG App with LlamaIndex",
css="""
body {
background-color: #f5f5dc;
font-family: 'Georgia', 'Merriweather', serif;
}
h1 {
font-size: 2.5em;
font-weight: bold;
color: #4e342e;
margin-bottom: 0.3em;
}
.subtitle {
font-size: 1.2em;
color: #6d4c41;
margin-bottom: 1.5em;
}
.gr-box, .gr-column, .gr-group {
border-radius: 15px;
padding: 20px;
background-color: #fffaf0;
box-shadow: 2px 4px 14px rgba(0, 0, 0, 0.1);
margin-top: 10px;
}
textarea, input[type="text"], input[type="file"] {
background-color: #fffaf0;
border: 1px solid #d2b48c;
color: #4e342e;
border-radius: 8px;
}
button {
background-color: #a1887f;
color: white;
font-weight: bold;
border-radius: 8px;
transition: background-color 0.3s ease;
}
button:hover {
background-color: #8d6e63;
}
.gr-button {
border-radius: 8px !important;
}
.tabitem {
border-radius: 15px !important;
}
"""
) as app:
with gr.Column():
gr.Markdown("""
<div style='text-align: center;'>
<h1>RAG Application with LlamaIndex</h1>
<div class='subtitle'>πŸ“„ Ask questions from documents using Retrieval-Augmented Generation (RAG)</div>
</div>
""")
# πŸ“˜ Insurance Tab
with gr.Tab("πŸ“˜ Insurance Summary"):
with gr.Column():
gr.Markdown("### πŸ›‘οΈ Ask about Insurance Document")
with gr.Group():
insurance_q = gr.Textbox(label="Your Question", placeholder="e.g., What does this cover?")
with gr.Row():
insurance_ask = gr.Button("Submit")
insurance_clear = gr.Button("Clear")
insurance_ans = gr.Textbox(label="Response", lines=6)
insurance_ask.click(fn=ask_insurance, inputs=insurance_q, outputs=insurance_ans)
insurance_clear.click(fn=clear_fields, outputs=[insurance_q, insurance_ans])
with gr.Group():
summarize_btn = gr.Button("Summarize Insurance Document")
summarize_output = gr.Textbox(label="Summary", lines=6)
summarize_btn.click(fn=summarize_insurance, outputs=summarize_output)
# 🧠 Paul Graham Tab
with gr.Tab("🧠 Paul Graham"):
with gr.Column():
gr.Markdown("### 🧠 Ask about Paul Graham's Writings")
with gr.Group():
paul_q = gr.Textbox(label="Your Question", placeholder="e.g., What does Paul say about startups?")
with gr.Row():
paul_ask = gr.Button("Ask")
paul_clear = gr.Button("Clear")
paul_ans = gr.Textbox(label="Response", lines=6)
paul_ask.click(fn=ask_paul, inputs=paul_q, outputs=paul_ans)
paul_clear.click(fn=clear_fields, outputs=[paul_q, paul_ans])
with gr.Group():
summarize_btn2 = gr.Button("Summarize Paul Graham's Ideas")
summarize_output2 = gr.Textbox(label="Summary", lines=6)
summarize_btn2.click(fn=summarize_paul, outputs=summarize_output2)
# πŸ“€ Upload Custom
with gr.Tab("πŸ“€ Upload & Ask Your File"):
with gr.Column():
gr.Markdown("### πŸ“€ Upload Your Own Document")
with gr.Group():
file_input = gr.File(label="Upload PDF or TXT", type="filepath")
status = gr.Textbox(label="Status", interactive=False)
file_input.change(fn=upload_and_refresh, inputs=file_input, outputs=status)
with gr.Group():
gr.Markdown("#### πŸ’¬ Ask a Question")
custom_q = gr.Textbox(label="Your Query")
with gr.Row():
custom_ask = gr.Button("Ask")
custom_clear = gr.Button("Clear")
custom_ans = gr.Textbox(label="Response", lines=6)
custom_ask.click(fn=ask_custom, inputs=custom_q, outputs=custom_ans)
custom_clear.click(fn=clear_fields, outputs=[custom_q, custom_ans])
with gr.Group():
gr.Markdown("#### πŸ“Œ Summarize the File")
summarize = gr.Button("Summarize Uploaded Document")
summary_output = gr.Textbox(label="Summary", lines=6)
summarize.click(fn=summarize_custom, outputs=summary_output)
app.launch()
# Run the app
launch()