import gradio as gr from transformers import pipeline classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) def fn_emotion(text): results = classifier(text, padding='max_length', max_length=512) return {label['label']: [label['score']] for label in results[0]} with gr.Blocks(title="Emotion",css="footer {visibility: hidden}") as demo: with gr.Row(): with gr.Column(): gr.Markdown("## Sentence Emotion") with gr.Row(): with gr.Column(): inputs = gr.TextArea(label="sentence",value=" I am so excited to go on vacation!",interactive=True) btn = gr.Button(value="RUN") with gr.Column(): output = gr.Label(label="output") btn.click(fn=fn_emotion,inputs=[inputs],outputs=[output]) demo.launch()