Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
from PIL import Image | |
import torch | |
model_id = "skt/A.X-4.0-VL-Light" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, torch_dtype=torch.bfloat16 | |
).to("cuda") | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
def ask_image_question(image, text): | |
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
inputs = processor(images=[image], conversations=[messages], return_tensors="pt").to("cuda") | |
generation_kwargs = { | |
"max_new_tokens": 256, | |
"top_p": 0.8, | |
"temperature": 0.5, | |
"top_k": 20, | |
"repetition_penalty": 1.05, | |
"do_sample": True, | |
} | |
generated_ids = model.generate(**inputs, **generation_kwargs) | |
output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return output | |
gr.Interface(fn=ask_image_question, | |
inputs=[gr.Image(type="pil"), gr.Textbox(label="μ§λ¬Έ")], | |
outputs="text").launch() |