Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import os | |
| import random | |
| import numpy as np | |
| import json | |
| import torch | |
| from PIL import Image, PngImagePlugin | |
| from datetime import datetime | |
| from dataclasses import dataclass | |
| from typing import Callable, Dict, Optional, Tuple | |
| from diffusers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def seed_everything(seed: int) -> torch.Generator: | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| np.random.seed(seed) | |
| generator = torch.Generator() | |
| generator.manual_seed(seed) | |
| return generator | |
| def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]: | |
| if aspect_ratio == "Custom": | |
| return None | |
| width, height = aspect_ratio.split(" x ") | |
| return int(width), int(height) | |
| def aspect_ratio_handler(aspect_ratio: str, custom_width: int, custom_height: int) -> Tuple[int, int]: | |
| if aspect_ratio == "Custom": | |
| return custom_width, custom_height | |
| else: | |
| width, height = parse_aspect_ratio(aspect_ratio) | |
| return width, height | |
| def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]: | |
| scheduler_factory_map = { | |
| "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True), | |
| "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True), | |
| "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"), | |
| "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), | |
| "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config), | |
| "DDIM": lambda: DDIMScheduler.from_config(scheduler_config), | |
| } | |
| return scheduler_factory_map.get(name, lambda: None)() | |
| def free_memory() -> None: | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| def common_upscale(samples: torch.Tensor, width: int, height: int, upscale_method: str) -> torch.Tensor: | |
| return torch.nn.functional.interpolate(samples, size=(height, width), mode=upscale_method) | |
| def upscale(samples: torch.Tensor, upscale_method: str, scale_by: float) -> torch.Tensor: | |
| width = round(samples.shape[3] * scale_by) | |
| height = round(samples.shape[2] * scale_by) | |
| return common_upscale(samples, width, height, upscale_method) | |
| def preprocess_image_dimensions(width, height): | |
| if width % 8 != 0: | |
| width = width - (width % 8) | |
| if height % 8 != 0: | |
| height = height - (height % 8) | |
| return width, height | |
| def save_image(image, metadata, output_dir): | |
| current_time = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| os.makedirs(output_dir, exist_ok=True) | |
| filename = f"image_{current_time}.png" | |
| filepath = os.path.join(output_dir, filename) | |
| metadata_str = json.dumps(metadata) | |
| info = PngImagePlugin.PngInfo() | |
| info.add_text("metadata", metadata_str) | |
| image.save(filepath, "PNG", pnginfo=info) | |
| return filepath | |
| def is_google_colab(): | |
| try: | |
| import google.colab | |
| return True | |
| except: | |
| return False | |
| def validate_json_parameters(json_str): | |
| try: | |
| params = json.loads(json_str) | |
| required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler'] | |
| for key in required_keys: | |
| if key not in params: | |
| raise ValueError(f"Missing required key: {key}") | |
| return params | |
| except json.JSONDecodeError: | |
| raise ValueError("Invalid JSON format") | |
| except Exception as e: | |
| raise ValueError(f"Error parsing JSON: {str(e)}") | |
| import base64 | |
| from io import BytesIO | |
| def image_to_base64(image): | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") |