Commit
·
9d49616
1
Parent(s):
a9abdf6
Upload Utils.py
Browse files
Utils.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
@author: serdarhelli
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import math
|
| 9 |
+
import cv2
|
| 10 |
+
import pydicom
|
| 11 |
+
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def find_center(img):
|
| 16 |
+
thresh=(img)*(255/np.max(img))
|
| 17 |
+
thresh = thresh.astype(np.uint8)
|
| 18 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
| 19 |
+
ret,thresh = cv2.threshold(thresh, 0, 255, cv2.THRESH_BINARY)
|
| 20 |
+
thresh=cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,iterations=1 )
|
| 21 |
+
thresh=cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
| 22 |
+
thresh=cv2.erode(thresh,kernel,iterations =1)
|
| 23 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
| 24 |
+
if len(contours)!=0:
|
| 25 |
+
c_area=np.zeros([len(contours)])
|
| 26 |
+
for i in range(len(contours)):
|
| 27 |
+
c_area[i]= cv2.contourArea(contours[i])
|
| 28 |
+
c_1=contours[np.argmax(c_area)]
|
| 29 |
+
M = cv2.moments(c_1)
|
| 30 |
+
cX = int(M["m10"] / M["m00"])
|
| 31 |
+
cY = int(M["m01"] / M["m00"])
|
| 32 |
+
return cX,cY
|
| 33 |
+
else:
|
| 34 |
+
return 0,0
|
| 35 |
+
|
| 36 |
+
def points_center_mass(predict):
|
| 37 |
+
points=np.zeros([6,2])
|
| 38 |
+
for i in range(6):
|
| 39 |
+
points[i,:]=find_center(predict[0,:,:,i])
|
| 40 |
+
return np.int32(points)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def points_max_value(predict):
|
| 44 |
+
points=np.zeros([6,2])
|
| 45 |
+
for i in range(6):
|
| 46 |
+
pre=predict[0,:,:,i]
|
| 47 |
+
points[i,:]=np.where(pre == pre.max())
|
| 48 |
+
return np.fliplr(np.int32(points))
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def read_dicom(path, voi_lut = True, fix_monochrome = True):
|
| 52 |
+
dicom = pydicom.read_file(path)
|
| 53 |
+
# VOI LUT (if available by DICOM device) is used to transform raw DICOM data to "human-friendly" view
|
| 54 |
+
if voi_lut:
|
| 55 |
+
data = apply_voi_lut(dicom.pixel_array, dicom)
|
| 56 |
+
else:
|
| 57 |
+
data = dicom.pixel_array
|
| 58 |
+
|
| 59 |
+
# depending on this value, X-ray may look inverted - fix that:
|
| 60 |
+
if fix_monochrome and dicom.PhotometricInterpretation == "MONOCHROME1":
|
| 61 |
+
data = np.amax(data) - data
|
| 62 |
+
# data=data*255
|
| 63 |
+
# data = np.uint8(data)
|
| 64 |
+
try:
|
| 65 |
+
PatientName=str(dicom.PatientName.components[0])
|
| 66 |
+
except:
|
| 67 |
+
PatientName="Empty"
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
PatientID=str(dicom.PatientID)
|
| 72 |
+
except:
|
| 73 |
+
PatientID="Empty"
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
SOPInstanceUID=str(dicom.SOPInstanceUID.name)
|
| 78 |
+
except:
|
| 79 |
+
SOPInstanceUID="Empty"
|
| 80 |
+
pass
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
StudyDate=str(dicom.StudyDate)
|
| 84 |
+
except:
|
| 85 |
+
StudyDate="Empty"
|
| 86 |
+
pass
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
InstitutionAddress=str(dicom.InstitutionName)
|
| 90 |
+
except:
|
| 91 |
+
InstitutionAddress="Empty"
|
| 92 |
+
pass
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
PatientAge=str(dicom.PatientAge)
|
| 96 |
+
except:
|
| 97 |
+
PatientAge="Empty"
|
| 98 |
+
pass
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
PatientSex=str(dicom.PatientSex)
|
| 102 |
+
except:
|
| 103 |
+
PatientSex="Empty"
|
| 104 |
+
pass
|
| 105 |
+
|
| 106 |
+
#data -> np.uint16
|
| 107 |
+
return data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def modification_cropping(roi):
|
| 112 |
+
if roi.shape[0]!=roi.shape[1]:
|
| 113 |
+
if roi.shape[0]>roi.shape[1]:
|
| 114 |
+
img2=np.zeros([roi.shape[0],roi.shape[0]])
|
| 115 |
+
add=(roi.shape[0]-roi.shape[1])
|
| 116 |
+
a1=add//2
|
| 117 |
+
a2=add-a1
|
| 118 |
+
img2[:,a1:(roi.shape[0]-a2)]=roi
|
| 119 |
+
|
| 120 |
+
if roi.shape[1]>roi.shape[0]:
|
| 121 |
+
img2=np.zeros([roi.shape[1],roi.shape[1]])
|
| 122 |
+
add=(roi.shape[1]-roi.shape[0])
|
| 123 |
+
a1=add//2
|
| 124 |
+
a2=add-a1
|
| 125 |
+
img2[a1:(roi.shape[1]-a2),:]=roi
|
| 126 |
+
else:
|
| 127 |
+
img2=roi
|
| 128 |
+
return img2
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def croping(img,x, y, w, h):
|
| 132 |
+
if y<0:
|
| 133 |
+
y=0
|
| 134 |
+
if abs(w)<abs(h):
|
| 135 |
+
z=np.abs(h-w)
|
| 136 |
+
if img.shape[1]<x+w+(z//2):
|
| 137 |
+
if x-(z//2)>0:
|
| 138 |
+
img2=img[y:y+h, x-(z//2):img.shape[1]].copy()
|
| 139 |
+
else:
|
| 140 |
+
img2=img[y:y+h, 0:img.shape[1]].copy()
|
| 141 |
+
else:
|
| 142 |
+
if x-(z//2)>0:
|
| 143 |
+
img2=img[y:y+h, x-(z//2):x+w+(z//2)].copy()
|
| 144 |
+
else:
|
| 145 |
+
img2=img[y:y+h, 0:x+w+(z//2)].copy()
|
| 146 |
+
if abs(h)<abs(w):
|
| 147 |
+
z=np.abs(h-w)
|
| 148 |
+
if img.shape[0]<y+h+(z//2):
|
| 149 |
+
if y-(z//2)>0:
|
| 150 |
+
img2=img[y-(z//2):img.shape[0], x:x+w].copy()
|
| 151 |
+
else:
|
| 152 |
+
img2=img[0:img.shape[0], x:x+w].copy()
|
| 153 |
+
else:
|
| 154 |
+
if y-(z//2)>0:
|
| 155 |
+
img2=img[y-(z//2):y+h+(z//2), x:x+w].copy()
|
| 156 |
+
else:
|
| 157 |
+
img2=img[0:y+h+(z//2), x:x+w].copy()
|
| 158 |
+
if abs(h)==abs(w):
|
| 159 |
+
img2=img[y:y + h, x:x + w].copy()
|
| 160 |
+
return img2
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def crop_resize(path):
|
| 168 |
+
try:
|
| 169 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,False,True)
|
| 170 |
+
except:
|
| 171 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,True,True)
|
| 172 |
+
pass
|
| 173 |
+
img = np.copy(data)
|
| 174 |
+
|
| 175 |
+
#Denoise Image
|
| 176 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
| 177 |
+
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
| 178 |
+
img2=cv2.erode(img2,kernel,iterations =2)
|
| 179 |
+
if len(img2.shape)==3:
|
| 180 |
+
img2=img2[:,:,0]
|
| 181 |
+
|
| 182 |
+
#Threshhold 100- 4096
|
| 183 |
+
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
| 184 |
+
|
| 185 |
+
#To Thresh uint8 becasue "findContours" doesnt accept uint16
|
| 186 |
+
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
| 187 |
+
a1,b1=thresh.shape
|
| 188 |
+
#Find Countours
|
| 189 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 190 |
+
|
| 191 |
+
#If There is no countour
|
| 192 |
+
if len(contours)==0:
|
| 193 |
+
return thresh,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
| 194 |
+
|
| 195 |
+
#Get Areas
|
| 196 |
+
c_area=np.zeros([len(contours)])
|
| 197 |
+
for i in range(len(contours)):
|
| 198 |
+
c_area[i]= cv2.contourArea(contours[i])
|
| 199 |
+
|
| 200 |
+
#Find Max Countour
|
| 201 |
+
cnts=contours[np.argmax(c_area)]
|
| 202 |
+
x, y, w, h = cv2.boundingRect(cnts)
|
| 203 |
+
|
| 204 |
+
#Posibble Square
|
| 205 |
+
roi = croping(data, x, y, w, h)
|
| 206 |
+
|
| 207 |
+
# Absolute Square
|
| 208 |
+
roi=modification_cropping(roi)
|
| 209 |
+
|
| 210 |
+
# Resize to 256x256 with Inter_Nearest
|
| 211 |
+
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
| 212 |
+
|
| 213 |
+
return roi,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
| 214 |
+
|
| 215 |
+
def put_text_point(original_img,heatpoint):
|
| 216 |
+
original_img =((original_img/np.max(original_img))*255).astype('uint8')
|
| 217 |
+
color = (0, 51, 204)
|
| 218 |
+
img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)
|
| 219 |
+
for i in range(6):
|
| 220 |
+
if heatpoint[i,0]<=0 and heatpoint[i,1]<=0:
|
| 221 |
+
print("L"+str(i)+" There is no Point")
|
| 222 |
+
else :
|
| 223 |
+
if i>2:
|
| 224 |
+
coordx=0
|
| 225 |
+
coordy=-(i*3)
|
| 226 |
+
else:
|
| 227 |
+
coordx=-(i*3)
|
| 228 |
+
coordy=+(i*3)+10
|
| 229 |
+
img=cv2.putText(img, "L"+str(i),(heatpoint[i,0]+coordx,heatpoint[i,1]+coordy), cv2.FONT_HERSHEY_SIMPLEX,0.35, color, 1)
|
| 230 |
+
img = cv2.circle(img, (heatpoint[i,0],heatpoint[i,1]), radius=2, color=color, thickness=-1)
|
| 231 |
+
return img
|
| 232 |
+
|
| 233 |
+
def get_vector(pt1,pt2):
|
| 234 |
+
vec=np.zeros([2])
|
| 235 |
+
vec[1]=(pt2[1]-pt1[1])
|
| 236 |
+
vec[0]=(pt2[0]-pt1[0])
|
| 237 |
+
return vec
|
| 238 |
+
|
| 239 |
+
def dotproduct(v1, v2):
|
| 240 |
+
return sum((a*b) for a, b in zip(v1, v2))
|
| 241 |
+
|
| 242 |
+
def length(v):
|
| 243 |
+
return math.sqrt(dotproduct(v, v))
|
| 244 |
+
|
| 245 |
+
def getAngle(v1, v2):
|
| 246 |
+
if length(v1)==0 or length(v2)==0:
|
| 247 |
+
return "Failed"
|
| 248 |
+
return math.degrees(math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))))
|
| 249 |
+
|
| 250 |
+
def bisector_vector(v1,v2):
|
| 251 |
+
if length(v1)==0 or length(v2) ==0:
|
| 252 |
+
return [0,0]
|
| 253 |
+
v1=v1/(length(v1))
|
| 254 |
+
v2=v2/(length(v2))
|
| 255 |
+
v3=(v1+v2)
|
| 256 |
+
return v3
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
#magnitude 50 length to l1 to l3
|
| 260 |
+
def angle_patellercongruence(heatpoint,magnitude=50):
|
| 261 |
+
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
| 262 |
+
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
| 263 |
+
v3=get_vector(heatpoint[1,:],heatpoint[3,:])
|
| 264 |
+
v4=bisector_vector(v1,v2)
|
| 265 |
+
v=np.int32(v4*magnitude)
|
| 266 |
+
coord=v+heatpoint[1,:]
|
| 267 |
+
if length(v3)==0:
|
| 268 |
+
return "Failed",[0,0]
|
| 269 |
+
angle_patellercongruence=getAngle(v3/(length(v3)),v4)
|
| 270 |
+
return angle_patellercongruence,coord
|
| 271 |
+
|
| 272 |
+
def angle_paraleltilt_displacement(heatpoint):
|
| 273 |
+
v1=get_vector(heatpoint[4,:],heatpoint[5,:])
|
| 274 |
+
v2=get_vector(heatpoint[0,:],heatpoint[2,:])
|
| 275 |
+
angle_paraleltilt=getAngle(v1,v2)
|
| 276 |
+
return angle_paraleltilt
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def draw_angle(img,heatpoint):
|
| 280 |
+
color = (255, 26, 26)
|
| 281 |
+
color2=(255, 255, 0)
|
| 282 |
+
color3=(51, 255, 51)
|
| 283 |
+
if np.min(heatpoint[0:3,:])<=0:
|
| 284 |
+
patellercongruence,angle_paraleltilt="Failed"
|
| 285 |
+
return img
|
| 286 |
+
if np.min(heatpoint[3:,:])<=0:
|
| 287 |
+
angle_paraleltilt="Failed"
|
| 288 |
+
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
| 289 |
+
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
| 290 |
+
angle=getAngle(v1,v2)
|
| 291 |
+
patellercongruence,coord=angle_patellercongruence(heatpoint)
|
| 292 |
+
angle_paraleltilt=angle_paraleltilt_displacement(heatpoint)
|
| 293 |
+
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple((heatpoint[2,:])), color, thickness=1, lineType=8)
|
| 294 |
+
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[0,:])), color, thickness=1, lineType=8)
|
| 295 |
+
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[3,:])), color2, thickness=1, lineType=8)
|
| 296 |
+
img=cv2.line(img, tuple((heatpoint[4,:])), tuple((heatpoint[5,:])), color3, thickness=1, lineType=8)
|
| 297 |
+
img=cv2.line(img, tuple((heatpoint[0,:])), tuple((heatpoint[2,:])), color3, thickness=1, lineType=8)
|
| 298 |
+
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple(coord), color2, thickness=1, lineType=8)
|
| 299 |
+
img=cv2.putText(img,"Pateller Congruence Angle :"+str(round(patellercongruence,2)),(25,25), cv2.FONT_HERSHEY_SIMPLEX,0.35, color2, 1)
|
| 300 |
+
img=cv2.putText(img,"Paralel Tilt Angle :"+str(round(angle_paraleltilt,2)),(50,50), cv2.FONT_HERSHEY_SIMPLEX,0.35, color3, 1)
|
| 301 |
+
img=cv2.putText(img, "Angle :"+str(round(angle,2)),(heatpoint[1,0]+10,heatpoint[1,1]+15), cv2.FONT_HERSHEY_SIMPLEX,0.35, color,1)
|
| 302 |
+
return img,patellercongruence,angle_paraleltilt
|
| 303 |
+
|
| 304 |
+
def predict(img,model):
|
| 305 |
+
#Normalization
|
| 306 |
+
img=np.float32(img/(np.max(img)))
|
| 307 |
+
img=np.reshape(img,(1,256,256,1))
|
| 308 |
+
predictions=model.predict(img)
|
| 309 |
+
#Get Final Prediction
|
| 310 |
+
pre=predictions[-1]
|
| 311 |
+
return pre
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
|