Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from pathlib import Path | |
| import streamlit as st | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from PIL import Image, ImageDraw, ImageFont | |
| import time | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import seaborn as sns | |
| from io import BytesIO | |
| import base64 | |
| from streamlit_drawable_canvas import st_canvas | |
| import io | |
| import torch | |
| import cv2 | |
| import mediapipe as mp | |
| import base64 | |
| import gc | |
| import accelerate | |
| import numpy | |
| # Set page config | |
| st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide") | |
| # Enhanced Custom CSS for a hyper-cyberpunk realistic look | |
| custom_css = """ | |
| <style> | |
| @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&family=Roboto+Mono:wght@400;700&display=swap'); | |
| :root { | |
| --neon-blue: #00FFFF; | |
| --neon-pink: #FF00FF; | |
| --neon-green: #39FF14; | |
| --dark-bg: #0a0a0a; | |
| --darker-bg: #050505; | |
| --light-text: #E0E0E0; | |
| } | |
| body { | |
| color: var(--light-text); | |
| background-color: var(--dark-bg); | |
| font-family: 'Roboto Mono', monospace; | |
| overflow-x: hidden; | |
| } | |
| .stApp { | |
| background: | |
| linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%), | |
| repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%), | |
| repeating-linear-gradient(-45deg, #111 0%, #111 1%, transparent 1%, transparent 3%); | |
| background-blend-mode: overlay; | |
| animation: backgroundPulse 20s infinite alternate; | |
| } | |
| @keyframes backgroundPulse { | |
| 0% { background-position: 0% 50%; } | |
| 100% { background-position: 100% 50%; } | |
| } | |
| h1, h2, h3 { | |
| font-family: 'Orbitron', sans-serif; | |
| position: relative; | |
| text-shadow: | |
| 0 0 5px var(--neon-blue), | |
| 0 0 10px var(--neon-blue), | |
| 0 0 20px var(--neon-blue), | |
| 0 0 40px var(--neon-blue); | |
| animation: textGlitch 5s infinite alternate; | |
| } | |
| @keyframes textGlitch { | |
| 0% { transform: skew(0deg); } | |
| 20% { transform: skew(5deg); text-shadow: 3px 3px 0 var(--neon-pink); } | |
| 40% { transform: skew(-5deg); text-shadow: -3px -3px 0 var(--neon-green); } | |
| 60% { transform: skew(3deg); text-shadow: 2px -2px 0 var(--neon-blue); } | |
| 80% { transform: skew(-3deg); text-shadow: -2px 2px 0 var(--neon-pink); } | |
| 100% { transform: skew(0deg); } | |
| } | |
| .stButton>button { | |
| color: var(--neon-blue); | |
| border: 2px solid var(--neon-blue); | |
| border-radius: 5px; | |
| background: linear-gradient(45deg, rgba(0,255,255,0.1), rgba(0,255,255,0.3)); | |
| box-shadow: 0 0 15px var(--neon-blue); | |
| transition: all 0.3s ease; | |
| text-transform: uppercase; | |
| letter-spacing: 2px; | |
| backdrop-filter: blur(5px); | |
| } | |
| .stButton>button:hover { | |
| transform: scale(1.05) translateY(-3px); | |
| box-shadow: 0 0 30px var(--neon-blue); | |
| text-shadow: 0 0 5px var(--neon-blue); | |
| } | |
| .stTextInput>div>div>input, .stTextArea>div>div>textarea, .stSelectbox>div>div>div { | |
| background-color: rgba(0, 255, 255, 0.1); | |
| border: 1px solid var(--neon-blue); | |
| border-radius: 5px; | |
| color: var(--neon-blue); | |
| backdrop-filter: blur(5px); | |
| } | |
| .stTextInput>div>div>input:focus, .stTextArea>div>div>textarea:focus, .stSelectbox>div>div>div:focus { | |
| box-shadow: 0 0 20px var(--neon-blue); | |
| } | |
| .stSlider>div>div>div>div { | |
| background-color: var(--neon-blue); | |
| } | |
| .stSlider>div>div>div>div>div { | |
| background-color: var(--neon-pink); | |
| box-shadow: 0 0 10px var(--neon-pink); | |
| } | |
| ::-webkit-scrollbar { | |
| width: 10px; | |
| height: 10px; | |
| } | |
| ::-webkit-scrollbar-track { | |
| background: var(--darker-bg); | |
| border-radius: 5px; | |
| } | |
| ::-webkit-scrollbar-thumb { | |
| background: var(--neon-blue); | |
| border-radius: 5px; | |
| box-shadow: 0 0 5px var(--neon-blue); | |
| } | |
| ::-webkit-scrollbar-thumb:hover { | |
| background: var(--neon-pink); | |
| box-shadow: 0 0 5px var(--neon-pink); | |
| } | |
| .stPlot, .stDataFrame { | |
| border: 1px solid var(--neon-blue); | |
| border-radius: 5px; | |
| overflow: hidden; | |
| box-shadow: 0 0 15px rgba(0, 255, 255, 0.3); | |
| } | |
| .stImage, .stIcon { | |
| filter: drop-shadow(0 0 5px var(--neon-blue)); | |
| } | |
| .stSidebar, .stContainer { | |
| background: | |
| linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%), | |
| repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%); | |
| animation: sidebarPulse 10s infinite alternate; | |
| } | |
| @keyframes sidebarPulse { | |
| 0% { background-position: 0% 50%; } | |
| 100% { background-position: 100% 50%; } | |
| } | |
| .element-container { | |
| position: relative; | |
| } | |
| .element-container::before { | |
| content: ''; | |
| position: absolute; | |
| top: -5px; | |
| left: -5px; | |
| right: -5px; | |
| bottom: -5px; | |
| border: 1px solid var(--neon-blue); | |
| border-radius: 10px; | |
| opacity: 0.5; | |
| pointer-events: none; | |
| } | |
| .stMarkdown a { | |
| color: var(--neon-pink); | |
| text-decoration: none; | |
| position: relative; | |
| transition: all 0.3s ease; | |
| } | |
| .stMarkdown a::after { | |
| content: ''; | |
| position: absolute; | |
| width: 100%; | |
| height: 1px; | |
| bottom: -2px; | |
| left: 0; | |
| background-color: var(--neon-pink); | |
| transform: scaleX(0); | |
| transform-origin: bottom right; | |
| transition: transform 0.3s ease; | |
| } | |
| .stMarkdown a:hover::after { | |
| transform: scaleX(1); | |
| transform-origin: bottom left; | |
| } | |
| /* Cyberpunk-style progress bar */ | |
| .stProgress > div > div { | |
| background-color: var(--neon-blue); | |
| background-image: linear-gradient( | |
| 45deg, | |
| var(--neon-pink) 25%, | |
| transparent 25%, | |
| transparent 50%, | |
| var(--neon-pink) 50%, | |
| var(--neon-pink) 75%, | |
| transparent 75%, | |
| transparent | |
| ); | |
| background-size: 40px 40px; | |
| animation: progress-bar-stripes 1s linear infinite; | |
| } | |
| @keyframes progress-bar-stripes { | |
| 0% { background-position: 40px 0; } | |
| 100% { background-position: 0 0; } | |
| } | |
| /* Glowing checkbox */ | |
| .stCheckbox > label > div { | |
| border-color: var(--neon-blue); | |
| transition: all 0.3s ease; | |
| } | |
| .stCheckbox > label > div[data-checked="true"] { | |
| background-color: var(--neon-blue); | |
| box-shadow: 0 0 10px var(--neon-blue); | |
| } | |
| /* Futuristic radio button */ | |
| .stRadio > div { | |
| background-color: rgba(0, 255, 255, 0.1); | |
| border-radius: 10px; | |
| padding: 10px; | |
| } | |
| .stRadio > div > label > div { | |
| border-color: var(--neon-blue); | |
| transition: all 0.3s ease; | |
| } | |
| .stRadio > div > label > div[data-checked="true"] { | |
| background-color: var(--neon-blue); | |
| box-shadow: 0 0 10px var(--neon-blue); | |
| } | |
| /* Cyberpunk-style tables */ | |
| .stDataFrame table { | |
| border-collapse: separate; | |
| border-spacing: 0; | |
| border: 1px solid var(--neon-blue); | |
| border-radius: 10px; | |
| overflow: hidden; | |
| } | |
| .stDataFrame th { | |
| background-color: rgba(0, 255, 255, 0.2); | |
| color: var(--neon-blue); | |
| text-transform: uppercase; | |
| letter-spacing: 1px; | |
| } | |
| .stDataFrame td { | |
| border-bottom: 1px solid rgba(0, 255, 255, 0.2); | |
| } | |
| .stDataFrame tr:last-child td { | |
| border-bottom: none; | |
| } | |
| /* Futuristic file uploader */ | |
| .stFileUploader > div { | |
| border: 2px dashed var(--neon-blue); | |
| border-radius: 10px; | |
| background-color: rgba(0, 255, 255, 0.05); | |
| transition: all 0.3s ease; | |
| } | |
| .stFileUploader > div:hover { | |
| background-color: rgba(0, 255, 255, 0.1); | |
| box-shadow: 0 0 15px rgba(0, 255, 255, 0.3); | |
| } | |
| /* Cyberpunk-style tooltips */ | |
| .stTooltipIcon { | |
| color: var(--neon-pink); | |
| transition: all 0.3s ease; | |
| } | |
| .stTooltipIcon:hover { | |
| color: var(--neon-blue); | |
| text-shadow: 0 0 5px var(--neon-blue); | |
| } | |
| /* Futuristic date input */ | |
| .stDateInput > div > div > input { | |
| background-color: rgba(0, 255, 255, 0.1); | |
| border: 1px solid var(--neon-blue); | |
| border-radius: 5px; | |
| color: var(--neon-blue); | |
| backdrop-filter: blur(5px); | |
| } | |
| .stDateInput > div > div > input:focus { | |
| box-shadow: 0 0 20px var(--neon-blue); | |
| } | |
| /* Cyberpunk-style code blocks */ | |
| .stCodeBlock { | |
| background-color: rgba(0, 0, 0, 0.6); | |
| border: 1px solid var(--neon-green); | |
| border-radius: 5px; | |
| color: var(--neon-green); | |
| font-family: 'Roboto Mono', monospace; | |
| padding: 10px; | |
| position: relative; | |
| overflow: hidden; | |
| } | |
| .stCodeBlock::before { | |
| content: ''; | |
| position: absolute; | |
| top: -10px; | |
| left: -10px; | |
| right: -10px; | |
| bottom: -10px; | |
| background: linear-gradient(45deg, var(--neon-green), transparent); | |
| opacity: 0.1; | |
| z-index: -1; | |
| } | |
| </style> | |
| """ | |
| # Apply the custom CSS | |
| st.markdown(custom_css, unsafe_allow_html=True) | |
| AVATAR_WIDTH = 600 | |
| AVATAR_HEIGHT = 800 | |
| # Your Streamlit app code goes here | |
| st.title("NeuraSense AI") | |
| # Set up DialoGPT model | |
| def load_tokenizer(): | |
| return AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
| def load_model(): | |
| model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium", | |
| device_map="auto", | |
| torch_dtype=torch.float16) | |
| return model | |
| tokenizer = load_tokenizer() | |
| model = load_model() | |
| # Advanced Sensor Classes | |
| class QuantumSensor: | |
| def measure(x, y, sensitivity): | |
| return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1) | |
| class NanoThermalSensor: | |
| def measure(base_temp, pressure, duration): | |
| return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001) | |
| class AdaptiveTextureSensor: | |
| textures = [ | |
| "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", | |
| "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate" | |
| ] | |
| def measure(x, y): | |
| return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)] | |
| class EMFieldSensor: | |
| def measure(x, y, sensitivity): | |
| return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity | |
| class NeuralNetworkSimulator: | |
| def process(inputs): | |
| weights = np.random.rand(len(inputs)) | |
| return np.dot(inputs, weights) / np.sum(weights) | |
| # Set up MediaPipe Pose for humanoid detection | |
| mp_pose = mp.solutions.pose | |
| pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.7) | |
| # Function to detect humanoid keypoints | |
| def detect_humanoid(image_path): | |
| image = cv2.imread(image_path) | |
| image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| results = pose.process(image_rgb) | |
| if results.pose_landmarks: | |
| landmarks = results.pose_landmarks.landmark | |
| image_height, image_width, _ = image.shape | |
| keypoints = [(int(landmark.x * image_width), int(landmark.y * image_height)) for landmark in landmarks] | |
| return keypoints | |
| return [] | |
| # Function to apply touch points on detected humanoid keypoints | |
| def apply_touch_points(image_path, keypoints): | |
| image = cv2.imread(image_path) | |
| image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| image_pil = Image.fromarray(image_rgb) | |
| draw = ImageDraw.Draw(image_pil) | |
| for point in keypoints: | |
| draw.ellipse([point[0] - 5, point[1] - 5, point[0] + 5, point[1] + 5], fill='red') | |
| return image_pil | |
| # Function to create a sensation map | |
| def create_sensation_map(width, height, keypoints): | |
| sensation_map = np.random.rand(height, width, 12) * 0.5 + 0.5 | |
| x_grid, y_grid = np.meshgrid(np.arange(width), np.arange(height)) | |
| for kp in keypoints: | |
| kp_x, kp_y = kp | |
| dist = np.sqrt((x_grid - kp_x) ** 2 + (y_grid - kp_y) ** 2) | |
| influence = np.exp(-dist / 100) | |
| sensation_map[:, :, :12] *= 1 + (influence[..., np.newaxis]) * 1.2 | |
| return sensation_map | |
| # Function to create heatmap for a specific sensation type | |
| def create_heatmap(sensation_map, sensation_type): | |
| plt.figure(figsize=(10, 15)) | |
| sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis') | |
| plt.axis('off') | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png') | |
| buf.seek(0) | |
| plt.close() | |
| heatmap_img = Image.open(buf) | |
| return heatmap_img | |
| # Function to generate AI response | |
| def generate_ai_response(keypoints, sensation_map): | |
| num_keypoints = len(keypoints) | |
| avg_sensations = np.mean(sensation_map, axis=(0, 1)) | |
| response = f"I detect {num_keypoints} key points on the humanoid figure. " | |
| response += "The average sensations across the body are:\n" | |
| for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", | |
| "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]): | |
| response += f"{sensation}: {avg_sensations[i]:.2f}\n" | |
| return response | |
| ### Streamlit UI Logic ### | |
| # Initialize touch_x and touch_y with None or placeholder values | |
| touch_x, touch_y = None, None | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| # Save and read the uploaded image | |
| image_path = 'temp.jpg' | |
| with open(image_path, 'wb') as f: | |
| f.write(uploaded_file.getvalue()) | |
| # Detect humanoid keypoints | |
| keypoints = detect_humanoid(image_path) | |
| # Apply touch points to the image | |
| processed_image = apply_touch_points(image_path, keypoints) | |
| # Create sensation map | |
| image = cv2.imread(image_path) | |
| image_height, image_width, _ = image.shape | |
| sensation_map = create_sensation_map(image_width, image_height, keypoints) | |
| # Display the image with touch points | |
| fig, ax = plt.subplots() | |
| ax.imshow(processed_image) | |
| clicked_points = [] | |
| def onclick(event): | |
| nonlocal touch_x, touch_y # Ensure we update the outer variables | |
| if event.xdata and event.ydata: | |
| touch_x, touch_y = int(event.xdata), int(event.ydata) | |
| clicked_points.append((touch_x, touch_y)) | |
| st.write(f"Clicked point: ({touch_x}, {touch_y})") | |
| # Display sensation values at the clicked point | |
| sensation = sensation_map[touch_y, touch_x] | |
| st.write("### Sensory Data Analysis") | |
| st.write(f"Pain: {sensation[0]:.2f} | Pleasure: {sensation[1]:.2f} | Pressure: {sensation[2]:.2f}") | |
| st.write(f"Temperature: {sensation[3]:.2f} | Texture: {sensation[4]:.2f} | EM Field: {sensation[5]:.2f}") | |
| st.write(f"Tickle: {sensation[6]:.2f} | Itch: {sensation[7]:.2f} | Quantum: {sensation[8]:.2f}") | |
| st.write(f"Neural: {sensation[9]:.2f} | Proprioception: {sensation[10]:.2f} | Synesthesia: {sensation[11]:.2f}") | |
| fig.canvas.mpl_connect('button_press_event', onclick) | |
| # Display the plot in Streamlit | |
| st.pyplot(fig) | |
| # Heatmap for different sensations | |
| sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", | |
| "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"] | |
| selected_sensation = st.selectbox("Select a sensation to view:", sensation_types) | |
| heatmap = create_heatmap(sensation_map, sensation_types.index(selected_sensation)) | |
| st.image(heatmap, use_column_width=True) | |
| # Generate AI response based on the image and sensations | |
| if st.button("Generate AI Response"): | |
| response = generate_ai_response(keypoints, sensation_map) | |
| st.write("AI Response:", response) | |
| # Simulate interaction | |
| if st.button("Simulate Interaction") and clicked_points: | |
| touch_x, touch_y = clicked_points[-1] | |
| # Interaction logic here... | |
| # Calculate average pressure across the image | |
| average_pressure = np.mean(sensation_map[:, :, 2]) # Pressure channel | |
| st.write(f"Average Pressure across the image: {average_pressure:.2f}") | |
| # Create a futuristic data display | |
| if touch_x is not None and touch_y is not None: | |
| location_str = f"({touch_x:.1f}, {touch_y:.1f})" | |
| else: | |
| location_str = "(no interaction yet)" | |
| data_display = ( | |
| "```\n" | |
| "+---------------------------------------------+\n" | |
| f"| Pressure : {average_pressure:.2f}".ljust(45) + "|\n" | |
| f"| Temperature : {np.mean(sensation_map[:, :, 3]):.2f}°C".ljust(45) + "|\n" | |
| f"| Texture : {np.mean(sensation_map[:, :, 4]):.2f}".ljust(45) + "|\n" | |
| f"| EM Field : {np.mean(sensation_map[:, :, 5]):.2f} μT".ljust(45) + "|\n" | |
| f"| Quantum State: {np.mean(sensation_map[:, :, 8]):.2f}".ljust(45) + "|\n" | |
| "+---------------------------------------------+\n" | |
| f"| Location: {location_str}".ljust(45) + "|\n" | |
| f"| Pain Level : {np.mean(sensation_map[:, :, 0]):.2f}".ljust(45) + "|\n" | |
| f"| Pleasure : {np.mean(sensation_map[:, :, 1]):.2f}".ljust(45) + "|\n" | |
| f"| Tickle : {np.mean(sensation_map[:, :, 6]):.2f}".ljust(45) + "|\n" | |
| f"| Itch : {np.mean(sensation_map[:, :, 7]):.2f}".ljust(45) + "|\n" | |
| f"| Proprioception: {np.mean(sensation_map[:, :, 10]):.2f}".ljust(44) + "|\n" | |
| f"| Synesthesia : {np.mean(sensation_map[:, :, 11]):.2f}".ljust(45) + "|\n" | |
| f"| Neural Response: {np.mean(sensation_map[:, :, 9]):.2f}".ljust(43) + "|\n" | |
| "+---------------------------------------------+\n" | |
| "```" | |
| ) | |
| # Display the futuristic data display using Streamlit's code block feature | |
| st.code(data_display, language="") | |
| # Generate description | |
| prompt = ( | |
| "Human: Analyze the sensory input for a hyper-advanced AI humanoid:\n" | |
| " Location: (" + str(round(touch_x, 1)) + ", " + str(round(touch_y, 1)) + ")\n" | |
| " Duration: " + str(round(touch_duration, 1)) + "s, Intensity: " + str(round(touch_pressure, 2)) + "\n" | |
| " Pressure: " + str(round(measured_pressure, 2)) + "\n" | |
| " Temperature: " + str(round(measured_temp, 2)) + "°C\n" | |
| " Texture: " + measured_texture + "\n" | |
| " EM Field: " + str(round(measured_em, 2)) + " μT\n" | |
| " Quantum State: " + str(quantum_state) + "\n" | |
| " Resulting in:\n" | |
| " Pain: " + str(round(pain_level, 2)) + ", Pleasure: " + str(round(pleasure_level, 2)) + "\n" | |
| " Tickle: " + str(round(tickle_level, 2)) + ", Itch: " + str(round(itch_level, 2)) + "\n" | |
| " Proprioception: " + str(round(proprioception, 2)) + "\n" | |
| " Synesthesia: " + synesthesia + "\n" | |
| " Neural Response: " + str(round(neural_response, 2)) + "\n" | |
| " Provide a detailed, scientific analysis of the AI's experience.\n" | |
| " AI:" | |
| ) | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
| output = model.generate( | |
| input_ids, | |
| max_length=400, | |
| num_return_sequences=1, | |
| no_repeat_ngram_size=2, | |
| top_k=50, | |
| top_p=0.95, | |
| temperature=0.7 | |
| ) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip() | |
| st.write("### AI's Sensory Analysis:") | |
| st.write(response) | |
| # Constants | |
| AVATAR_WIDTH = 50 # Reduced size | |
| AVATAR_HEIGHT = 75 # Reduced size | |
| # Function to generate sensation data on-the-fly | |
| def generate_sensation_data(i, j): | |
| return np.random.rand() | |
| # Simplified sensation map | |
| st.subheader("Neuro-Sensory Map") | |
| titles = [ | |
| 'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', | |
| 'Tickle', 'Itch', 'Proprioception', 'Synesthesia' | |
| ] | |
| # Generate and display maps one at a time | |
| for title in titles: | |
| fig, ax = plt.subplots(figsize=(5, 5)) | |
| sensation_map = np.array([[generate_sensation_data(i, j) for j in range(AVATAR_WIDTH)] for i in range(AVATAR_HEIGHT)]) | |
| im = ax.imshow(sensation_map, cmap='plasma') | |
| ax.set_title(title) | |
| fig.colorbar(im, ax=ax) | |
| st.pyplot(fig) | |
| plt.close(fig) # Close the figure to free up memory | |
| st.write("The neuro-sensory maps illustrate the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.") | |
| # Add information about the AI's capabilities | |
| st.subheader("NeuraSense AI: Advanced Sensory Capabilities") | |
| capabilities = [ | |
| "1. High-Precision Pressure Sensors", | |
| "2. Advanced Thermal Detectors", | |
| "3. Adaptive Texture Analysis", | |
| "4. Neural Network Integration", | |
| "5. Proprioception Simulation", | |
| "6. Synesthesia Emulation", | |
| "7. Tickle and Itch Simulation", | |
| "8. Adaptive Pain and Pleasure Modeling" | |
| ] | |
| for capability in capabilities: | |
| st.write(capability) | |
| # Interactive sensory exploration | |
| st.subheader("Interactive Sensory Exploration") | |
| exploration_type = st.selectbox("Choose a sensory exploration:", | |
| ["Synesthesia Experience", "Proprioceptive Mapping"]) | |
| if exploration_type == "Synesthesia Experience": | |
| st.write("Experience how the AI might perceive colors as sounds or textures as tastes.") | |
| synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3) | |
| st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True) | |
| elif exploration_type == "Proprioceptive Mapping": | |
| st.write("Explore the AI's sense of body position and movement.") | |
| proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2) | |
| for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)]) | |
| buf = io.BytesIO() | |
| plt.figure(figsize=(5, 5)) | |
| plt.imshow(proprioceptive_map, cmap='coolwarm') | |
| plt.savefig(buf, format='png') | |
| plt.close() # Close the figure to free up memory | |
| proprioceptive_image = Image.open(buf) | |
| st.image(proprioceptive_image, use_column_width=True) | |
| # Footer | |
| st.write("---") | |
| st.write("NeuraSense AI: Advanced Sensory Simulation v4.0") | |
| st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.") |