Spaces:
Paused
Paused
Create performance_plot.py
Browse files- performance_plot.py +253 -0
performance_plot.py
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import json
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
CATEGORIES = ["task-solving", "math-reasoning", "general-instruction", "natural-question", "safety"]
|
| 13 |
+
LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
|
| 14 |
+
|
| 15 |
+
FORCE_DOWNLOAD = bool(int(os.environ.get("FORCE_DOWNLOAD", "0")))
|
| 16 |
+
HF_TOKEN = str(os.environ.get("HF_TOKEN", ""))
|
| 17 |
+
DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", ""))
|
| 18 |
+
PERFORMANCE_FILENAME = str(os.environ.get("PERFORMANCE_FILENAME", "gpt4_single_json.csv"))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
rename_map = {
|
| 22 |
+
"seallm13b10L6k_a_5a1R1_seaall_sft4x_1_5a1_r2_0_dpo_8_40000s": "SeaLLM-13b",
|
| 23 |
+
# "seallm13b10L4k_a_sft4xdpo_5a": "SeaLLM-13b-10L",
|
| 24 |
+
"polylm": "PolyLM-13b",
|
| 25 |
+
"qwen": "Qwen-14b",
|
| 26 |
+
"gpt-3.5-turbo": "GPT-3.5-turbo",
|
| 27 |
+
"gpt-4-1106-preview": "GPT-4-turbo",
|
| 28 |
+
}
|
| 29 |
+
CATEGORIES = [ "task-solving", "math-reasoning", "general-instruction", "natural-question", "safety", ]
|
| 30 |
+
|
| 31 |
+
CATEGORIES_NAMES = {
|
| 32 |
+
"task-solving": 'Task-solving',
|
| 33 |
+
"math-reasoning": 'Math',
|
| 34 |
+
"general-instruction": 'General-instruction',
|
| 35 |
+
"natural-question": 'NaturalQA',
|
| 36 |
+
"safety": 'Safety',
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# LANGS = ['en', 'vi', 'th', 'id', 'km', 'lo', 'ms', 'my', 'tl']
|
| 41 |
+
LANGS = ['en', 'vi', 'id', 'ms', 'tl', 'th', 'km', 'lo', 'my']
|
| 42 |
+
LANG_NAMES = {
|
| 43 |
+
'en': 'eng',
|
| 44 |
+
'vi': 'vie',
|
| 45 |
+
'th': 'tha',
|
| 46 |
+
'id': 'ind',
|
| 47 |
+
'km': 'khm',
|
| 48 |
+
'lo': 'lao',
|
| 49 |
+
'ms': 'msa',
|
| 50 |
+
'my': 'mya',
|
| 51 |
+
'tl': 'tgl',
|
| 52 |
+
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
MODEL_DFRAME = None
|
| 58 |
+
|
| 59 |
+
def get_model_df():
|
| 60 |
+
# global MODEL_DFRAME
|
| 61 |
+
# if isinstance(MODEL_DFRAME, pd.DataFrame):
|
| 62 |
+
# print(f'Load cache data frame')
|
| 63 |
+
# return MODEL_DFRAME
|
| 64 |
+
from huggingface_hub import hf_hub_download
|
| 65 |
+
assert DATA_SET_REPO_PATH != ''
|
| 66 |
+
assert HF_TOKEN != ''
|
| 67 |
+
repo_id = DATA_SET_REPO_PATH
|
| 68 |
+
filename = PERFORMANCE_FILENAME
|
| 69 |
+
|
| 70 |
+
# data_path = f"{DATA_SET_REPO_PATH}/{PERFORMANCE_FILENAME}"
|
| 71 |
+
file_path = hf_hub_download(
|
| 72 |
+
repo_id=repo_id,
|
| 73 |
+
filename=filename,
|
| 74 |
+
force_download=FORCE_DOWNLOAD,
|
| 75 |
+
local_dir='./hf_cache',
|
| 76 |
+
repo_type="dataset",
|
| 77 |
+
token=HF_TOKEN
|
| 78 |
+
)
|
| 79 |
+
print(f'Downloaded file at {file_path} from {DATA_SET_REPO_PATH} / {PERFORMANCE_FILENAME}')
|
| 80 |
+
df = pd.read_csv(file_path)
|
| 81 |
+
return df
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def aggregate_df(df, model_dict, category_name, categories):
|
| 85 |
+
scores_all = []
|
| 86 |
+
all_models = df["model"].unique()
|
| 87 |
+
for model in all_models:
|
| 88 |
+
for i, cat in enumerate(categories):
|
| 89 |
+
# filter category/model, and score format error (<1% case)
|
| 90 |
+
res = df[(df[category_name]==cat) & (df["model"]==model) & (df["score"] >= 0)]
|
| 91 |
+
score = res["score"].mean()
|
| 92 |
+
cat_name = cat
|
| 93 |
+
scores_all.append({"model": model, category_name: cat_name, "score": score})
|
| 94 |
+
|
| 95 |
+
target_models = list(model_dict.keys())
|
| 96 |
+
scores_target = [scores_all[i] for i in range(len(scores_all)) if scores_all[i]["model"] in target_models]
|
| 97 |
+
scores_target = sorted(scores_target, key=lambda x: target_models.index(x["model"]), reverse=True)
|
| 98 |
+
|
| 99 |
+
df_score = pd.DataFrame(scores_target)
|
| 100 |
+
df_score = df_score[df_score["model"].isin(target_models)]
|
| 101 |
+
|
| 102 |
+
rename_map = model_dict
|
| 103 |
+
|
| 104 |
+
for k, v in rename_map.items():
|
| 105 |
+
df_score.replace(k, v, inplace=True)
|
| 106 |
+
return df_score
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def polar_subplot(fig, dframe, model_names, category_label, category_names, row, col, showlegend=True):
|
| 110 |
+
|
| 111 |
+
# cat category
|
| 112 |
+
colors = px.colors.qualitative.Plotly
|
| 113 |
+
for i, (model, model_name) in enumerate(model_names):
|
| 114 |
+
cat_list = dframe[dframe['model'] == model_name][category_label].tolist()
|
| 115 |
+
score_list = dframe[dframe['model'] == model_name]['score'].tolist()
|
| 116 |
+
cat_list += [cat_list[0]]
|
| 117 |
+
cat_list = [category_names[x] for x in cat_list]
|
| 118 |
+
score_list += [score_list[0]]
|
| 119 |
+
polar = go.Scatterpolar(
|
| 120 |
+
name = model_name,
|
| 121 |
+
r = score_list,
|
| 122 |
+
theta = cat_list,
|
| 123 |
+
legendgroup=f'{i}',
|
| 124 |
+
marker=dict(color=colors[i]),
|
| 125 |
+
hovertemplate="""Score: %{r:.2f}""",
|
| 126 |
+
showlegend=showlegend,
|
| 127 |
+
)
|
| 128 |
+
fig.add_trace(polar, row, col)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def plot_agg_fn():
|
| 132 |
+
df = get_model_df()
|
| 133 |
+
|
| 134 |
+
all_models = df["model"].unique()
|
| 135 |
+
model_names = list(rename_map.items())
|
| 136 |
+
colors = px.colors.qualitative.Plotly
|
| 137 |
+
|
| 138 |
+
cat_df = aggregate_df(df, rename_map, "category", CATEGORIES, )
|
| 139 |
+
lang_df = aggregate_df(df, rename_map, "lang", LANGS, )
|
| 140 |
+
|
| 141 |
+
fig = make_subplots(
|
| 142 |
+
rows=1, cols=2,
|
| 143 |
+
specs=[[{'type': 'polar'}]*2],
|
| 144 |
+
subplot_titles=("By Category", "By Language"),
|
| 145 |
+
)
|
| 146 |
+
fig.layout.annotations[0].y = 1.05
|
| 147 |
+
fig.layout.annotations[1].y = 1.05
|
| 148 |
+
|
| 149 |
+
# cat category
|
| 150 |
+
for i, (model, model_name) in enumerate(model_names):
|
| 151 |
+
cat_list = cat_df[cat_df['model'] == model_name]['category'].tolist()
|
| 152 |
+
score_list = cat_df[cat_df['model'] == model_name]['score'].tolist()
|
| 153 |
+
cat_list += [cat_list[0]]
|
| 154 |
+
cat_list = [CATEGORIES_NAMES[x] for x in cat_list]
|
| 155 |
+
score_list += [score_list[0]]
|
| 156 |
+
polar = go.Scatterpolar(
|
| 157 |
+
name = model_name,
|
| 158 |
+
r = score_list,
|
| 159 |
+
theta = cat_list,
|
| 160 |
+
legendgroup=f'{i}',
|
| 161 |
+
marker=dict(color=colors[i]),
|
| 162 |
+
hovertemplate="""Score: %{r:.2f}""",
|
| 163 |
+
)
|
| 164 |
+
fig.add_trace(polar, 1, 1)
|
| 165 |
+
|
| 166 |
+
# cat langs
|
| 167 |
+
for i, (model, model_name) in enumerate(model_names):
|
| 168 |
+
cat_list = lang_df[lang_df['model'] == model_name]['lang'].tolist()
|
| 169 |
+
score_list = lang_df[lang_df['model'] == model_name]['score'].tolist()
|
| 170 |
+
cat_list += [cat_list[0]]
|
| 171 |
+
score_list += [score_list[0]]
|
| 172 |
+
cat_list = [LANG_NAMES[x] for x in cat_list]
|
| 173 |
+
polar = go.Scatterpolar(
|
| 174 |
+
name = model_name,
|
| 175 |
+
r = score_list,
|
| 176 |
+
theta = cat_list,
|
| 177 |
+
legendgroup=f'{i}',
|
| 178 |
+
marker=dict(color=colors[i]),
|
| 179 |
+
hovertemplate="""Score: %{r:.2f}""",
|
| 180 |
+
showlegend=False,
|
| 181 |
+
)
|
| 182 |
+
fig.add_trace(polar, 1, 2)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
polar_config = dict(
|
| 186 |
+
angularaxis = dict(
|
| 187 |
+
rotation=90, # start position of angular axis
|
| 188 |
+
),
|
| 189 |
+
radialaxis = dict(
|
| 190 |
+
range=[0, 10],
|
| 191 |
+
),
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
fig.update_layout(
|
| 195 |
+
polar = polar_config,
|
| 196 |
+
polar2 = polar_config,
|
| 197 |
+
title='Sea-Bench (rated by GPT-4)',
|
| 198 |
+
)
|
| 199 |
+
return fig
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def plot_by_lang_fn():
|
| 203 |
+
df = get_model_df()
|
| 204 |
+
model_names = list(rename_map.items())
|
| 205 |
+
|
| 206 |
+
fig = make_subplots(
|
| 207 |
+
rows=3, cols=3,
|
| 208 |
+
specs=[[{'type': 'polar'}]*3] * 3,
|
| 209 |
+
subplot_titles=list(LANG_NAMES.values()),
|
| 210 |
+
# vertical_spacing=1
|
| 211 |
+
)
|
| 212 |
+
# print(fig.layout.annotations)
|
| 213 |
+
for ano in fig.layout.annotations:
|
| 214 |
+
ano.y = ano.y + 0.02
|
| 215 |
+
has_safety = ['vi', 'id', 'th']
|
| 216 |
+
|
| 217 |
+
for lang_id, lang in enumerate(LANGS):
|
| 218 |
+
cat_names = CATEGORIES if lang in has_safety else [x for x in CATEGORIES if x != 'safety']
|
| 219 |
+
cat_lang_df = aggregate_df(df[df['lang'] == lang], rename_map, "category", cat_names, )
|
| 220 |
+
row = lang_id // 3 + 1
|
| 221 |
+
col = lang_id % 3 + 1
|
| 222 |
+
polar_subplot(fig, cat_lang_df, model_names, 'category', CATEGORIES_NAMES, row, col, showlegend=lang_id == 0)
|
| 223 |
+
|
| 224 |
+
polar_config = dict(
|
| 225 |
+
angularaxis = dict(
|
| 226 |
+
rotation=90, # start position of angular axis
|
| 227 |
+
),
|
| 228 |
+
radialaxis = dict(
|
| 229 |
+
range=[0, 10],
|
| 230 |
+
),
|
| 231 |
+
)
|
| 232 |
+
layer_kwargs = {f"polar{i}": polar_config for i in range(1, 10)}
|
| 233 |
+
fig.update_layout(
|
| 234 |
+
title='Sea-Bench - By language (rated by GPT-4)',
|
| 235 |
+
height=1000,
|
| 236 |
+
# width=1200,
|
| 237 |
+
**layer_kwargs
|
| 238 |
+
)
|
| 239 |
+
return fig
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def attach_plot_to_demo(demo):
|
| 244 |
+
with gr.Accordion("Psst... wanna see some performance benchmarks?", open=False):
|
| 245 |
+
gr_plot_agg = gr.Plot(label="Aggregated")
|
| 246 |
+
gr_plot_bylang = gr.Plot(label='By language')
|
| 247 |
+
|
| 248 |
+
# def callback():
|
| 249 |
+
demo.load(plot_agg_fn, [], gr_plot_agg)
|
| 250 |
+
demo.load(plot_by_lang_fn, [], gr_plot_bylang)
|
| 251 |
+
# return callback
|
| 252 |
+
|
| 253 |
+
|