Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ec9b1de
1
Parent(s):
6e891fa
init
Browse files- app.py +3 -2
- sae.py +102 -0
- sarm_llama.py +649 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import
|
|
|
4 |
|
5 |
# --- 1. 加载模型和Tokenizer ---
|
6 |
# 这一步会自动从Hugging Face Hub下载你的模型文件
|
@@ -12,7 +13,7 @@ MODEL_ID = "schrieffer/SARM-4B"
|
|
12 |
print(f"Loading model: {MODEL_ID} on {DEVICE}...")
|
13 |
|
14 |
# 加载模型时必须信任远程代码,因为SARM有自定义架构
|
15 |
-
model =
|
16 |
MODEL_ID,
|
17 |
device_map=DEVICE,
|
18 |
trust_remote_code=True,
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from sarm_llama import LlamaSARM
|
5 |
|
6 |
# --- 1. 加载模型和Tokenizer ---
|
7 |
# 这一步会自动从Hugging Face Hub下载你的模型文件
|
|
|
13 |
print(f"Loading model: {MODEL_ID} on {DEVICE}...")
|
14 |
|
15 |
# 加载模型时必须信任远程代码,因为SARM有自定义架构
|
16 |
+
model = LlamaSARM.from_pretrained(
|
17 |
MODEL_ID,
|
18 |
device_map=DEVICE,
|
19 |
trust_remote_code=True,
|
sae.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
def get_last_assistant_masks(input_ids):
|
5 |
+
i=len(input_ids)-4
|
6 |
+
while i >= 0:
|
7 |
+
if input_ids[i:i+4] == [128006, 78191, 128007, 271]:
|
8 |
+
pos = i + 4
|
9 |
+
break
|
10 |
+
i -= 1
|
11 |
+
|
12 |
+
assistant_masks = []
|
13 |
+
for i in range(len(input_ids)):
|
14 |
+
if i < pos:
|
15 |
+
assistant_masks.append(0)
|
16 |
+
else:
|
17 |
+
assistant_masks.append(1)
|
18 |
+
|
19 |
+
assert input_ids[-1]==128009
|
20 |
+
return assistant_masks
|
21 |
+
|
22 |
+
def Normalized_MSE_loss(x: torch.Tensor, x_hat: torch.Tensor) -> torch.Tensor:
|
23 |
+
return (((x_hat - x) ** 2).mean(dim=-1) / (x**2).mean(dim=-1)).mean()
|
24 |
+
|
25 |
+
def Masked_Normalized_MSE_loss(x: torch.Tensor, x_hat: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
26 |
+
mask = mask.to(torch.bfloat16)
|
27 |
+
loss = ((x_hat - x) ** 2).mean(dim=-1) / (x**2).mean(dim=-1)
|
28 |
+
assert loss.shape==mask.shape
|
29 |
+
seq_loss = (mask * loss).sum(-1) / (mask.sum(-1))
|
30 |
+
return seq_loss.mean()
|
31 |
+
|
32 |
+
def pre_process(hidden_stats: torch.Tensor, eps: float = 1e-6) -> tuple:
|
33 |
+
'''
|
34 |
+
:param hidden_stats: Hidden states (shape: [batch, max_length, hidden_size]).
|
35 |
+
:param eps: Epsilon value for numerical stability.
|
36 |
+
'''
|
37 |
+
mean = hidden_stats.mean(dim=-1, keepdim=True)
|
38 |
+
std = hidden_stats.std(dim=-1, keepdim=True)
|
39 |
+
x = (hidden_stats - mean) / (std + eps)
|
40 |
+
return x, mean, std
|
41 |
+
|
42 |
+
class TopkSAE(nn.Module):
|
43 |
+
'''
|
44 |
+
TopK Sparse Autoencoder Implements:
|
45 |
+
z = TopK(encoder(x - pre_bias) + latent_bias)
|
46 |
+
x_hat = decoder(z) + pre_bias
|
47 |
+
'''
|
48 |
+
def __init__(
|
49 |
+
self, hidden_size: int, latent_size: int, k: int
|
50 |
+
) -> None:
|
51 |
+
'''
|
52 |
+
:param hidden_size: Dimensionality of the input residual stream activation.
|
53 |
+
:param latent_size: Number of latent units.
|
54 |
+
:param k: Number of activated latents.
|
55 |
+
'''
|
56 |
+
|
57 |
+
# 'sae_pre_bias', 'sae_latent_bias', 'sae_encoder.weight', 'sae_decoder.weight'
|
58 |
+
|
59 |
+
assert k <= latent_size, f'k should be less than or equal to {latent_size}'
|
60 |
+
super(TopkSAE, self).__init__()
|
61 |
+
self.pre_bias = nn.Parameter(torch.zeros(hidden_size))
|
62 |
+
self.latent_bias = nn.Parameter(torch.zeros(latent_size))
|
63 |
+
self.encoder = nn.Linear(hidden_size, latent_size, bias=False)
|
64 |
+
self.decoder = nn.Linear(latent_size, hidden_size, bias=False)
|
65 |
+
|
66 |
+
self.k = k
|
67 |
+
self.latent_size = latent_size
|
68 |
+
self.hidden_size = hidden_size
|
69 |
+
|
70 |
+
# "tied" init
|
71 |
+
# self.decoder.weight.data = self.encoder.weight.data.T.clone()
|
72 |
+
|
73 |
+
def pre_acts(self, x: torch.Tensor) -> torch.Tensor:
|
74 |
+
x = x - self.pre_bias
|
75 |
+
return self.encoder(x) + self.latent_bias
|
76 |
+
|
77 |
+
def get_latents(self, pre_acts: torch.Tensor) -> torch.Tensor:
|
78 |
+
topk = torch.topk(pre_acts, self.k, dim=-1)
|
79 |
+
latents = torch.zeros_like(pre_acts)
|
80 |
+
latents.scatter_(-1, topk.indices, topk.values)
|
81 |
+
return latents
|
82 |
+
|
83 |
+
def encode(self, x: torch.Tensor) -> torch.Tensor:
|
84 |
+
pre_acts = self.pre_acts(x)
|
85 |
+
latents = self.get_latents(pre_acts)
|
86 |
+
return latents
|
87 |
+
|
88 |
+
def decode(self, latents: torch.Tensor) -> torch.Tensor:
|
89 |
+
return self.decoder(latents) + self.pre_bias
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor) -> tuple:
|
92 |
+
'''
|
93 |
+
:param x: Input residual stream activation (shape: [batch_size, max_length, hidden_size]).
|
94 |
+
:return: latents (shape: [batch_size, max_length, latent_size]).
|
95 |
+
x_hat (shape: [batch_size, max_length, hidden_size]).
|
96 |
+
'''
|
97 |
+
latents = self.encode(x)
|
98 |
+
x_hat = self.decode(latents)
|
99 |
+
return latents, x_hat
|
100 |
+
|
101 |
+
|
102 |
+
|
sarm_llama.py
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from typing import List, Optional, Union, Tuple
|
5 |
+
from transformers import LlamaConfig
|
6 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
7 |
+
from transformers.utils import logging
|
8 |
+
from transformers.modeling_outputs import (
|
9 |
+
SequenceClassifierOutputWithPast,
|
10 |
+
BaseModelOutputWithPast
|
11 |
+
)
|
12 |
+
from transformers.models.llama.modeling_llama import (
|
13 |
+
LlamaDecoderLayer,
|
14 |
+
LlamaRMSNorm,
|
15 |
+
LlamaRotaryEmbedding,
|
16 |
+
LlamaPreTrainedModel
|
17 |
+
)
|
18 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
19 |
+
|
20 |
+
# Local
|
21 |
+
from sae import TopkSAE, pre_process, Normalized_MSE_loss, Masked_Normalized_MSE_loss
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
#==========================================================================================================================================================================
|
26 |
+
#==========================================================================================================================================================================
|
27 |
+
class MyLlamaModel(LlamaPreTrainedModel):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
config: LlamaConfig,
|
31 |
+
hidden_state_source_layer: int=None
|
32 |
+
):
|
33 |
+
if hidden_state_source_layer==None:
|
34 |
+
# default 1/2
|
35 |
+
hidden_state_source_layer = int(config.num_hidden_layers/2)
|
36 |
+
|
37 |
+
super().__init__(config)
|
38 |
+
self.hidden_state_source_layer = hidden_state_source_layer
|
39 |
+
self.padding_idx = config.pad_token_id
|
40 |
+
self.vocab_size = config.vocab_size
|
41 |
+
|
42 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
43 |
+
self.layers = nn.ModuleList(
|
44 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(hidden_state_source_layer)]
|
45 |
+
)
|
46 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
47 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
48 |
+
self.gradient_checkpointing = False
|
49 |
+
if getattr(config, "pretraining_tp", 1) != 1:
|
50 |
+
logger.warn("`pretraining_tp` is deprecated, please use `model.tensor_parallel` instead.")
|
51 |
+
|
52 |
+
# Initialize weights and apply final processing
|
53 |
+
self.post_init()
|
54 |
+
|
55 |
+
def get_input_embeddings(self):
|
56 |
+
return self.embed_tokens
|
57 |
+
|
58 |
+
def set_input_embeddings(self, value):
|
59 |
+
self.embed_tokens = value
|
60 |
+
|
61 |
+
def forward(
|
62 |
+
self,
|
63 |
+
input_ids: torch.LongTensor = None,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
position_ids: Optional[torch.LongTensor] = None,
|
66 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
67 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
68 |
+
use_cache: Optional[bool] = None,
|
69 |
+
output_attentions: Optional[bool] = None,
|
70 |
+
output_hidden_states: Optional[bool] = None,
|
71 |
+
return_dict: Optional[bool] = None,
|
72 |
+
cache_position: Optional[torch.LongTensor] = None,
|
73 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
74 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
75 |
+
output_hidden_states = (
|
76 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
77 |
+
)
|
78 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
79 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
80 |
+
|
81 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
82 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
83 |
+
|
84 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
85 |
+
logger.warning_once(
|
86 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
87 |
+
)
|
88 |
+
use_cache = False
|
89 |
+
|
90 |
+
if inputs_embeds is None:
|
91 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
92 |
+
|
93 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
94 |
+
return_legacy_cache = False
|
95 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
96 |
+
return_legacy_cache = True
|
97 |
+
if past_key_values is None:
|
98 |
+
past_key_values = DynamicCache()
|
99 |
+
else:
|
100 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
101 |
+
logger.warning_once(
|
102 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
103 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
104 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
105 |
+
)
|
106 |
+
|
107 |
+
if cache_position is None:
|
108 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
109 |
+
cache_position = torch.arange(
|
110 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
111 |
+
)
|
112 |
+
if position_ids is None:
|
113 |
+
position_ids = cache_position.unsqueeze(0)
|
114 |
+
|
115 |
+
causal_mask = self._update_causal_mask(
|
116 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
117 |
+
)
|
118 |
+
hidden_states = inputs_embeds
|
119 |
+
|
120 |
+
# create position embeddings to be shared across the decoder layers
|
121 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
122 |
+
|
123 |
+
# decoder layers
|
124 |
+
all_hidden_states = () if output_hidden_states else None
|
125 |
+
all_self_attns = () if output_attentions else None
|
126 |
+
next_decoder_cache = None
|
127 |
+
|
128 |
+
|
129 |
+
for decoder_layer in self.layers:
|
130 |
+
if output_hidden_states:
|
131 |
+
all_hidden_states += (hidden_states,)
|
132 |
+
|
133 |
+
if self.gradient_checkpointing and self.training:
|
134 |
+
layer_outputs = self._gradient_checkpointing_func(
|
135 |
+
decoder_layer.__call__,
|
136 |
+
hidden_states,
|
137 |
+
causal_mask,
|
138 |
+
position_ids,
|
139 |
+
past_key_values,
|
140 |
+
output_attentions,
|
141 |
+
use_cache,
|
142 |
+
cache_position,
|
143 |
+
position_embeddings,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
layer_outputs = decoder_layer(
|
147 |
+
hidden_states,
|
148 |
+
attention_mask=causal_mask,
|
149 |
+
position_ids=position_ids,
|
150 |
+
past_key_value=past_key_values,
|
151 |
+
output_attentions=output_attentions,
|
152 |
+
use_cache=use_cache,
|
153 |
+
cache_position=cache_position,
|
154 |
+
position_embeddings=position_embeddings,
|
155 |
+
)
|
156 |
+
|
157 |
+
hidden_states = layer_outputs[0]
|
158 |
+
|
159 |
+
if use_cache:
|
160 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
161 |
+
|
162 |
+
if output_attentions:
|
163 |
+
all_self_attns += (layer_outputs[1],)
|
164 |
+
|
165 |
+
# hidden_states = self.norm(hidden_states)
|
166 |
+
|
167 |
+
# add hidden states from the last decoder layer
|
168 |
+
if output_hidden_states:
|
169 |
+
all_hidden_states += (hidden_states,)
|
170 |
+
|
171 |
+
next_cache = next_decoder_cache if use_cache else None
|
172 |
+
if return_legacy_cache:
|
173 |
+
next_cache = next_cache.to_legacy_cache()
|
174 |
+
|
175 |
+
if not return_dict:
|
176 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
177 |
+
return BaseModelOutputWithPast(
|
178 |
+
last_hidden_state=hidden_states,
|
179 |
+
past_key_values=next_cache,
|
180 |
+
hidden_states=all_hidden_states,
|
181 |
+
attentions=all_self_attns,
|
182 |
+
)
|
183 |
+
|
184 |
+
def _update_causal_mask(
|
185 |
+
self,
|
186 |
+
attention_mask: torch.Tensor,
|
187 |
+
input_tensor: torch.Tensor,
|
188 |
+
cache_position: torch.Tensor,
|
189 |
+
past_key_values: Cache,
|
190 |
+
output_attentions: bool,
|
191 |
+
):
|
192 |
+
if self.config._attn_implementation == "flash_attention_2":
|
193 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
194 |
+
return attention_mask
|
195 |
+
return None
|
196 |
+
|
197 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
198 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
199 |
+
# to infer the attention mask.
|
200 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
201 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
202 |
+
|
203 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
204 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
205 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
206 |
+
attention_mask,
|
207 |
+
inputs_embeds=input_tensor,
|
208 |
+
past_key_values_length=past_seen_tokens,
|
209 |
+
is_training=self.training,
|
210 |
+
):
|
211 |
+
return None
|
212 |
+
|
213 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
214 |
+
sequence_length = input_tensor.shape[1]
|
215 |
+
if using_static_cache:
|
216 |
+
target_length = past_key_values.get_max_cache_shape()
|
217 |
+
else:
|
218 |
+
target_length = (
|
219 |
+
attention_mask.shape[-1]
|
220 |
+
if isinstance(attention_mask, torch.Tensor)
|
221 |
+
else past_seen_tokens + sequence_length + 1
|
222 |
+
)
|
223 |
+
|
224 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
225 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
226 |
+
attention_mask,
|
227 |
+
sequence_length=sequence_length,
|
228 |
+
target_length=target_length,
|
229 |
+
dtype=dtype,
|
230 |
+
device=device,
|
231 |
+
cache_position=cache_position,
|
232 |
+
batch_size=input_tensor.shape[0],
|
233 |
+
)
|
234 |
+
|
235 |
+
if (
|
236 |
+
self.config._attn_implementation == "sdpa"
|
237 |
+
and attention_mask is not None
|
238 |
+
and attention_mask.device.type == "cuda"
|
239 |
+
and not output_attentions
|
240 |
+
):
|
241 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
242 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
243 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
244 |
+
min_dtype = torch.finfo(dtype).min
|
245 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
246 |
+
|
247 |
+
return causal_mask
|
248 |
+
|
249 |
+
@staticmethod
|
250 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
251 |
+
attention_mask: torch.Tensor,
|
252 |
+
sequence_length: int,
|
253 |
+
target_length: int,
|
254 |
+
dtype: torch.dtype,
|
255 |
+
device: torch.device,
|
256 |
+
cache_position: torch.Tensor,
|
257 |
+
batch_size: int,
|
258 |
+
**kwargs,
|
259 |
+
):
|
260 |
+
"""
|
261 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
262 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
attention_mask (`torch.Tensor`):
|
266 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
267 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
268 |
+
sequence_length (`int`):
|
269 |
+
The sequence length being processed.
|
270 |
+
target_length (`int`):
|
271 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
272 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
273 |
+
dtype (`torch.dtype`):
|
274 |
+
The dtype to use for the 4D attention mask.
|
275 |
+
device (`torch.device`):
|
276 |
+
The device to plcae the 4D attention mask on.
|
277 |
+
cache_position (`torch.Tensor`):
|
278 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
279 |
+
batch_size (`torch.Tensor`):
|
280 |
+
Batch size.
|
281 |
+
"""
|
282 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
283 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
284 |
+
causal_mask = attention_mask
|
285 |
+
else:
|
286 |
+
min_dtype = torch.finfo(dtype).min
|
287 |
+
causal_mask = torch.full(
|
288 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
289 |
+
)
|
290 |
+
if sequence_length != 1:
|
291 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
292 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
293 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
294 |
+
if attention_mask is not None:
|
295 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
296 |
+
mask_length = attention_mask.shape[-1]
|
297 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
298 |
+
padding_mask = padding_mask == 0
|
299 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
300 |
+
padding_mask, min_dtype
|
301 |
+
)
|
302 |
+
|
303 |
+
return causal_mask
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
#==========================================================================================================================================================================
|
309 |
+
#============================================ 从LlamaForSequenceClassification为原型,修改为SAE4RM的形式 =============================================
|
310 |
+
#==========================================================================================================================================================================
|
311 |
+
|
312 |
+
|
313 |
+
class LlamaSARM(LlamaPreTrainedModel):
|
314 |
+
def __init__(
|
315 |
+
self, config, sae_hidden_state_source_layer, sae_latent_size, sae_k,
|
316 |
+
sae_use_sequence_level=False,
|
317 |
+
sarm_use_topk=False,
|
318 |
+
sarm_train_mode=1
|
319 |
+
):
|
320 |
+
super().__init__(config)
|
321 |
+
self.num_labels = config.num_labels
|
322 |
+
self.model = MyLlamaModel(config, hidden_state_source_layer=sae_hidden_state_source_layer)
|
323 |
+
|
324 |
+
self.sae_use_sequence_level = sae_use_sequence_level
|
325 |
+
self.sarm_use_topk = sarm_use_topk
|
326 |
+
self.sarm_train_mode = sarm_train_mode
|
327 |
+
|
328 |
+
self.score = nn.Linear(sae_latent_size, self.num_labels, bias=False)
|
329 |
+
self.sae = TopkSAE(hidden_size=self.model.config.hidden_size, latent_size=sae_latent_size, k=sae_k)
|
330 |
+
|
331 |
+
if self.sarm_train_mode==0:
|
332 |
+
for p in self.model.parameters():
|
333 |
+
p.requires_grad_(False)
|
334 |
+
if self.sarm_train_mode==0 or self.sarm_train_mode==1:
|
335 |
+
for p in self.sae.parameters():
|
336 |
+
p.requires_grad_(False)
|
337 |
+
|
338 |
+
# Initialize weights and apply final processing
|
339 |
+
self.post_init()
|
340 |
+
|
341 |
+
|
342 |
+
def get_input_embeddings(self):
|
343 |
+
return self.model.embed_tokens
|
344 |
+
|
345 |
+
def set_input_embeddings(self, value):
|
346 |
+
self.model.embed_tokens = value
|
347 |
+
|
348 |
+
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
input_ids: Optional[torch.LongTensor] = None,
|
352 |
+
attention_mask: Optional[torch.Tensor] = None,
|
353 |
+
assistant_masks: Optional[torch.Tensor] = None,
|
354 |
+
position_ids: Optional[torch.LongTensor] = None,
|
355 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
356 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
357 |
+
labels: Optional[torch.LongTensor] = None,
|
358 |
+
use_cache: Optional[bool] = None,
|
359 |
+
output_attentions: Optional[bool] = None,
|
360 |
+
output_hidden_states: Optional[bool] = None,
|
361 |
+
return_dict: Optional[bool] = None,
|
362 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
363 |
+
r"""
|
364 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
365 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
366 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
367 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
368 |
+
"""
|
369 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
370 |
+
|
371 |
+
transformer_outputs = self.model(
|
372 |
+
input_ids,
|
373 |
+
attention_mask=attention_mask,
|
374 |
+
position_ids=position_ids,
|
375 |
+
past_key_values=past_key_values,
|
376 |
+
inputs_embeds=inputs_embeds,
|
377 |
+
use_cache=use_cache,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
output_hidden_states=output_hidden_states,
|
380 |
+
return_dict=return_dict,
|
381 |
+
)
|
382 |
+
hidden_states = transformer_outputs[0]
|
383 |
+
|
384 |
+
|
385 |
+
h, _, _ = pre_process(hidden_states)
|
386 |
+
sae_features = self.sae.pre_acts(h)
|
387 |
+
if self.sarm_use_topk:
|
388 |
+
sae_features = self.sae.get_latents(sae_features)
|
389 |
+
|
390 |
+
|
391 |
+
logits = self.score(sae_features)
|
392 |
+
|
393 |
+
if input_ids is not None:
|
394 |
+
batch_size = input_ids.shape[0]
|
395 |
+
else:
|
396 |
+
batch_size = inputs_embeds.shape[0]
|
397 |
+
|
398 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
399 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
400 |
+
if self.config.pad_token_id is None:
|
401 |
+
sequence_lengths = -1
|
402 |
+
else:
|
403 |
+
if input_ids is not None:
|
404 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
405 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
406 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
407 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
408 |
+
else:
|
409 |
+
sequence_lengths = -1
|
410 |
+
# ensure last_token is <|eot_id|>
|
411 |
+
assert ((input_ids[torch.arange(batch_size, device=logits.device), sequence_lengths]!=torch.ones(batch_size, device=logits.device)*128009).sum() == 0).item()
|
412 |
+
|
413 |
+
# joint training
|
414 |
+
rec_loss = None
|
415 |
+
if self.sarm_train_mode==2:
|
416 |
+
if not self.sarm_use_topk:
|
417 |
+
sae_features_t = self.sae.get_latents(sae_features)
|
418 |
+
h_hat = self.sae.decode(sae_features_t)
|
419 |
+
rec_loss = Masked_Normalized_MSE_loss(h, h_hat, assistant_masks)
|
420 |
+
elif self.sarm_train_mode==3 and not self.sae_use_sequence_level:
|
421 |
+
h_d = h.detach()
|
422 |
+
_, h_hat = self.sae(h_d)
|
423 |
+
rec_loss = Masked_Normalized_MSE_loss(h_d, h_hat, assistant_masks)
|
424 |
+
elif self.sarm_train_mode==3 and self.sae_use_sequence_level:
|
425 |
+
h_d = h.detach()
|
426 |
+
sequence_lengths_t = sequence_lengths.view(-1,1,1)
|
427 |
+
last_token_mask = torch.zeros([h_d.shape[0] ,1 ,h_d.shape[1]], device=h_d.device)
|
428 |
+
last_token_mask.scatter_(-1, sequence_lengths_t, torch.ones_like(sequence_lengths_t, dtype=last_token_mask.dtype))
|
429 |
+
|
430 |
+
# h_d -> (bs, seq_len, d), last_token_mask -> (bs, 1, seq_len)
|
431 |
+
h_d = torch.matmul(last_token_mask.to(h_d.dtype), h_d)
|
432 |
+
|
433 |
+
_, h_hat = self.sae(h_d)
|
434 |
+
rec_loss = Normalized_MSE_loss(h_d, h_hat)
|
435 |
+
|
436 |
+
|
437 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
438 |
+
|
439 |
+
|
440 |
+
loss = None
|
441 |
+
if labels is not None:
|
442 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
443 |
+
if rec_loss is not None:
|
444 |
+
loss = rec_loss
|
445 |
+
|
446 |
+
if not return_dict:
|
447 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
448 |
+
return ((loss,) + output) if loss is not None else output
|
449 |
+
|
450 |
+
return SequenceClassifierOutputWithPast(
|
451 |
+
loss=loss,
|
452 |
+
logits=pooled_logits,
|
453 |
+
past_key_values=transformer_outputs.past_key_values,
|
454 |
+
hidden_states=transformer_outputs.hidden_states,
|
455 |
+
attentions=transformer_outputs.attentions,
|
456 |
+
)
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
#==========================================================================================================================================================================
|
461 |
+
#================================= 从LlamaForSequenceClassification为原型,可以放在任意层的score head(两层MLP) ========================================
|
462 |
+
#==========================================================================================================================================================================
|
463 |
+
class LlamaBaseline(LlamaPreTrainedModel):
|
464 |
+
def __init__(
|
465 |
+
self, config, sae_hidden_state_source_layer, sae_latent_size
|
466 |
+
):
|
467 |
+
super().__init__(config)
|
468 |
+
self.num_labels = config.num_labels
|
469 |
+
self.model = MyLlamaModel(config, hidden_state_source_layer=sae_hidden_state_source_layer)
|
470 |
+
|
471 |
+
self.untrained_sae_encoder = nn.Linear(self.model.config.hidden_size, sae_latent_size)
|
472 |
+
self.score = nn.Linear(sae_latent_size, self.num_labels, bias=False)
|
473 |
+
|
474 |
+
# Initialize weights and apply final processing
|
475 |
+
self.post_init()
|
476 |
+
|
477 |
+
|
478 |
+
def get_input_embeddings(self):
|
479 |
+
return self.model.embed_tokens
|
480 |
+
|
481 |
+
def set_input_embeddings(self, value):
|
482 |
+
self.model.embed_tokens = value
|
483 |
+
|
484 |
+
|
485 |
+
def forward(
|
486 |
+
self,
|
487 |
+
input_ids: Optional[torch.LongTensor] = None,
|
488 |
+
attention_mask: Optional[torch.Tensor] = None,
|
489 |
+
assistant_masks: Optional[torch.Tensor] = None,
|
490 |
+
position_ids: Optional[torch.LongTensor] = None,
|
491 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
492 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
493 |
+
labels: Optional[torch.LongTensor] = None,
|
494 |
+
use_cache: Optional[bool] = None,
|
495 |
+
output_attentions: Optional[bool] = None,
|
496 |
+
output_hidden_states: Optional[bool] = None,
|
497 |
+
return_dict: Optional[bool] = None,
|
498 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
499 |
+
r"""
|
500 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
501 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
502 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
503 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
504 |
+
"""
|
505 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
506 |
+
|
507 |
+
transformer_outputs = self.model(
|
508 |
+
input_ids,
|
509 |
+
attention_mask=attention_mask,
|
510 |
+
position_ids=position_ids,
|
511 |
+
past_key_values=past_key_values,
|
512 |
+
inputs_embeds=inputs_embeds,
|
513 |
+
use_cache=use_cache,
|
514 |
+
output_attentions=output_attentions,
|
515 |
+
output_hidden_states=output_hidden_states,
|
516 |
+
return_dict=return_dict,
|
517 |
+
)
|
518 |
+
hidden_states = transformer_outputs[0]
|
519 |
+
logits = self.score(self.untrained_sae_encoder(hidden_states))
|
520 |
+
|
521 |
+
if input_ids is not None:
|
522 |
+
batch_size = input_ids.shape[0]
|
523 |
+
else:
|
524 |
+
batch_size = inputs_embeds.shape[0]
|
525 |
+
|
526 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
527 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
528 |
+
if self.config.pad_token_id is None:
|
529 |
+
sequence_lengths = -1
|
530 |
+
else:
|
531 |
+
if input_ids is not None:
|
532 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
533 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
534 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
535 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
536 |
+
else:
|
537 |
+
sequence_lengths = -1
|
538 |
+
|
539 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
540 |
+
|
541 |
+
loss = None
|
542 |
+
if labels is not None:
|
543 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
544 |
+
|
545 |
+
if not return_dict:
|
546 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
547 |
+
return ((loss,) + output) if loss is not None else output
|
548 |
+
|
549 |
+
return SequenceClassifierOutputWithPast(
|
550 |
+
loss=loss,
|
551 |
+
logits=pooled_logits,
|
552 |
+
past_key_values=transformer_outputs.past_key_values,
|
553 |
+
hidden_states=transformer_outputs.hidden_states,
|
554 |
+
attentions=transformer_outputs.attentions,
|
555 |
+
)
|
556 |
+
|
557 |
+
|
558 |
+
class LlamaBaselineFrozen(LlamaPreTrainedModel):
|
559 |
+
def __init__(
|
560 |
+
self, config, sae_hidden_state_source_layer, sae_latent_size
|
561 |
+
):
|
562 |
+
super().__init__(config)
|
563 |
+
self.num_labels = config.num_labels
|
564 |
+
self.model = MyLlamaModel(config, hidden_state_source_layer=sae_hidden_state_source_layer)
|
565 |
+
|
566 |
+
self.untrained_sae_encoder = nn.Linear(self.model.config.hidden_size, sae_latent_size)
|
567 |
+
self.score = nn.Linear(sae_latent_size, self.num_labels, bias=False)
|
568 |
+
|
569 |
+
# Initialize weights and apply final processing
|
570 |
+
self.post_init()
|
571 |
+
|
572 |
+
|
573 |
+
def get_input_embeddings(self):
|
574 |
+
return self.model.embed_tokens
|
575 |
+
|
576 |
+
def set_input_embeddings(self, value):
|
577 |
+
self.model.embed_tokens = value
|
578 |
+
|
579 |
+
|
580 |
+
def forward(
|
581 |
+
self,
|
582 |
+
input_ids: Optional[torch.LongTensor] = None,
|
583 |
+
attention_mask: Optional[torch.Tensor] = None,
|
584 |
+
position_ids: Optional[torch.LongTensor] = None,
|
585 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
586 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
587 |
+
labels: Optional[torch.LongTensor] = None,
|
588 |
+
use_cache: Optional[bool] = None,
|
589 |
+
output_attentions: Optional[bool] = None,
|
590 |
+
output_hidden_states: Optional[bool] = None,
|
591 |
+
return_dict: Optional[bool] = None,
|
592 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
593 |
+
r"""
|
594 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
595 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
596 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
597 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
598 |
+
"""
|
599 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
600 |
+
|
601 |
+
transformer_outputs = self.model(
|
602 |
+
input_ids,
|
603 |
+
attention_mask=attention_mask,
|
604 |
+
position_ids=position_ids,
|
605 |
+
past_key_values=past_key_values,
|
606 |
+
inputs_embeds=inputs_embeds,
|
607 |
+
use_cache=use_cache,
|
608 |
+
output_attentions=output_attentions,
|
609 |
+
output_hidden_states=output_hidden_states,
|
610 |
+
return_dict=return_dict,
|
611 |
+
)
|
612 |
+
hidden_states = transformer_outputs[0]
|
613 |
+
logits = self.score(self.untrained_sae_encoder(hidden_states))
|
614 |
+
|
615 |
+
if input_ids is not None:
|
616 |
+
batch_size = input_ids.shape[0]
|
617 |
+
else:
|
618 |
+
batch_size = inputs_embeds.shape[0]
|
619 |
+
|
620 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
621 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
622 |
+
if self.config.pad_token_id is None:
|
623 |
+
sequence_lengths = -1
|
624 |
+
else:
|
625 |
+
if input_ids is not None:
|
626 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
627 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
628 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
629 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
630 |
+
else:
|
631 |
+
sequence_lengths = -1
|
632 |
+
|
633 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
634 |
+
|
635 |
+
loss = None
|
636 |
+
if labels is not None:
|
637 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
638 |
+
|
639 |
+
if not return_dict:
|
640 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
641 |
+
return ((loss,) + output) if loss is not None else output
|
642 |
+
|
643 |
+
return SequenceClassifierOutputWithPast(
|
644 |
+
loss=loss,
|
645 |
+
logits=pooled_logits,
|
646 |
+
past_key_values=transformer_outputs.past_key_values,
|
647 |
+
hidden_states=transformer_outputs.hidden_states,
|
648 |
+
attentions=transformer_outputs.attentions,
|
649 |
+
)
|