Scalino84
commited on
Commit
·
f5bd834
1
Parent(s):
6455ecf
Add application file
Browse files
app.py
CHANGED
@@ -1,73 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
-
from diffusers import StableDiffusionPipeline
|
3 |
import torch
|
4 |
-
from
|
5 |
-
|
6 |
-
def generate_image(prompt, guidance_scale, num_steps, lora_scale):
|
7 |
-
# Lade das Base Model
|
8 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
-
"runwayml/stable-diffusion-v1-5",
|
10 |
-
torch_dtype=torch.float16
|
11 |
-
).to("cuda")
|
12 |
-
|
13 |
-
# Lade dein LoRA
|
14 |
-
pipe.load_lora_weights(
|
15 |
-
"Scalino84/my-flux-face-v2",
|
16 |
-
weight_name="flux_train_replicate.safetensors"
|
17 |
-
)
|
18 |
-
|
19 |
-
# Generiere das Bild
|
20 |
-
image = pipe(
|
21 |
-
prompt=prompt,
|
22 |
-
num_inference_steps=num_steps,
|
23 |
-
guidance_scale=guidance_scale,
|
24 |
-
cross_attention_kwargs={"scale": lora_scale}
|
25 |
-
).images[0]
|
26 |
-
|
27 |
-
return image
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
minimum=1,
|
43 |
-
maximum=20,
|
44 |
-
value=7.5,
|
45 |
-
step=0.5
|
46 |
-
)
|
47 |
-
steps = gr.Slider(
|
48 |
-
label="Inference Steps",
|
49 |
-
minimum=20,
|
50 |
-
maximum=100,
|
51 |
-
value=30,
|
52 |
-
step=1
|
53 |
-
)
|
54 |
-
lora_scale = gr.Slider(
|
55 |
-
label="LoRA Scale",
|
56 |
-
minimum=0.1,
|
57 |
-
maximum=1.0,
|
58 |
-
value=0.8,
|
59 |
-
step=0.1
|
60 |
-
)
|
61 |
-
generate = gr.Button("Generate Image")
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def generate_image(prompt, guidance_scale=7.5, num_steps=30, lora_scale=0.8):
|
6 |
+
try:
|
7 |
+
# Initialize the pipeline
|
8 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
+
"runwayml/stable-diffusion-v1-5",
|
10 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load LoRA weights
|
14 |
+
pipe.load_lora_weights("Scalino84/my-flux-face-v2")
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Generate image
|
20 |
+
image = pipe(
|
21 |
+
prompt=prompt,
|
22 |
+
num_inference_steps=int(num_steps),
|
23 |
+
guidance_scale=float(guidance_scale),
|
24 |
+
).images[0]
|
25 |
+
|
26 |
+
return image
|
27 |
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error: {str(e)}")
|
30 |
+
raise gr.Error(str(e))
|
31 |
+
|
32 |
+
# Create Gradio interface
|
33 |
+
interface = gr.Interface(
|
34 |
+
fn=generate_image,
|
35 |
+
inputs=[
|
36 |
+
gr.Textbox(label="Prompt", value="a photo of xyz person, professional headshot"),
|
37 |
+
gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale"),
|
38 |
+
gr.Slider(minimum=20, maximum=100, value=30, label="Number of Steps"),
|
39 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.8, label="LoRA Scale")
|
40 |
+
],
|
41 |
+
outputs=gr.Image(label="Generated Image"),
|
42 |
+
title="Flux Face Generator",
|
43 |
+
description="Generate images using your custom LoRA model"
|
44 |
+
)
|
45 |
|
46 |
+
# Launch the interface
|
47 |
+
interface.launch()
|
48 |
|