File size: 945 Bytes
056af96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr

# Load the model
model_name = "Salesforce/codegen-350M-mono"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id)

# Function to generate code
def generate_code(prompt):
    output = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.3, top_p=0.95)
    return output[0]["generated_text"]

# Gradio UI
ui = gr.Interface(
    fn=generate_code,
    inputs=gr.Textbox(lines=4, label="πŸ’¬ Enter your Python prompt"),
    outputs=gr.Code(label="🧠 Generated Python Code"),
    title="πŸ€– AI Python Code Generator",
    description="Type a task like 'write a function to reverse a list', and get Python code.",
    theme="default"
)

ui.launch()