|
import gradio as gr |
|
from ultralytics import ASSETS, YOLO |
|
import PIL.Image as Image |
|
import os |
|
|
|
examples = [[Image.open(f'examples/{ex}'), 0.25, 0.45] for ex in os.listdir('examples')] |
|
|
|
model = YOLO("license_plate_detector.pt") |
|
|
|
|
|
def predict_image(img, conf_threshold, iou_threshold): |
|
"""Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds.""" |
|
results = model.predict( |
|
source=img, |
|
conf=conf_threshold, |
|
iou=iou_threshold, |
|
show_labels=True, |
|
show_conf=True, |
|
imgsz=640, |
|
) |
|
|
|
for r in results: |
|
im_array = r.plot() |
|
im = Image.fromarray(im_array[..., ::-1]) |
|
|
|
return im |
|
|
|
title='License Plate Detector π' |
|
description='A license plate detector model fine-tuned from Ultralytics Yolov11' |
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), |
|
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), |
|
], |
|
outputs=gr.Image(type="pil", label="Result"), |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
flagging_mode='never' |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|