import gradio as gr import numpy as np from transformers import pipeline import os example_list = [["examples/" + example] for example in os.listdir("examples")] classifier = pipeline('audio-classification', model='SamuelM0422/distilhubert-finetuned-gtzan') title = 'Music Classification 🎙️' description = 'A distilhubert model finetuned at gtzan dataset to classify music genres' def predict(example): #print(type(example)) example = {'array': np.array(example[1], dtype=np.float32), 'sampling_rate': example[0]} pred = classifier(example) return {p['label']: p['score'] for p in pred} demo = gr.Interface(fn=predict, title=title, description=description, inputs="audio", outputs="label", examples=example_list, flagging_mode='never') demo.launch()