Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
import os | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
classifier = pipeline('audio-classification', model='SamuelM0422/distilhubert-finetuned-gtzan') | |
title = 'Music Classification 🎙️' | |
description = 'A distilhubert model finetuned at gtzan dataset to classify music genres' | |
def predict(example): | |
#print(type(example)) | |
example = {'array': np.array(example[1], dtype=np.float32), 'sampling_rate': example[0]} | |
pred = classifier(example) | |
return {p['label']: p['score'] for p in pred} | |
demo = gr.Interface(fn=predict, title=title, description=description, | |
inputs="audio", outputs="label", examples=example_list, flagging_mode='never') | |
demo.launch() | |