File size: 19,604 Bytes
8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 d61a8aa 8c7aa17 d61a8aa 8c7aa17 d61a8aa 8c7aa17 d61a8aa 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff 8c7aa17 018d0ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# import streamlit as st
# from langchain_openai import OpenAIEmbeddings # Changed to OpenAI embeddings
# from langchain_chroma import Chroma
# from langchain_groq import ChatGroq
# import os
# from dotenv import load_dotenv
# # Page config
# st.set_page_config(
# page_title="UK Construction Regulations Assistant",
# page_icon="ποΈ",
# layout="wide"
# )
# # Load environment variables
# load_dotenv()
# # Initialize RAG components
# @st.cache_resource
# def init_rag():
# """Initialize RAG components with caching"""
# try:
# # Check if main_chroma_data exists
# if not os.path.exists("./main_chroma_data"):
# st.error("Error: main_chroma_data directory not found. Please check the directory path.")
# return None, None
# # Initialize embeddings
# try:
# embeddings = OpenAIEmbeddings(
# api_key=os.getenv("OPENAI_API_KEY")
# )
# except Exception as e:
# st.error(f"Error initializing embeddings: {str(e)}")
# return None, None
# # Initialize vector store
# try:
# vectorstore = Chroma(
# collection_name="main_construction_rag",
# embedding_function=embeddings,
# persist_directory="./main_chroma_data"
# )
# except Exception as e:
# st.error(f"Error initializing vector store: {str(e)}")
# return None, None
# # Check if GROQ API key is set
# groq_api_key = os.getenv("GROQ_API_KEY")
# if not groq_api_key:
# st.error("Error: GROQ_API_KEY not found in environment variables")
# return None, None
# # Initialize LLM
# try:
# llm = ChatGroq(
# api_key=groq_api_key,
# model_name="llama-3.3-70b-versatile",
# temperature=0
# )
# except Exception as e:
# st.error(f"Error initializing LLM: {str(e)}")
# return None, None
# return vectorstore, llm
# except Exception as e:
# st.error(f"Error initializing RAG system: {str(e)}")
# return None, None
# # Initialize
# vectorstore, llm = init_rag()
# # Sidebar for feedback
# with st.sidebar:
# st.title("π Feedback")
# feedback = st.text_area("Share your feedback on the answers:", height=100)
# if st.button("Submit Feedback"):
# st.success("Thank you for your feedback!")
# # Main interface
# st.title("ποΈ UK Construction Regulations Assistant")
# st.markdown("""
# This AI assistant helps answer questions about UK construction regulations using:
# - Official Building Regulations documents
# - Expert YouTube content from LABC, RICS, and other authorities
# - Technical documentation and guidance
# """)
# # User input
# question = st.text_input("Enter your question about UK construction regulations:")
# if st.button("Get Answer"):
# if not question:
# st.warning("Please enter a question.")
# elif vectorstore is None or llm is None:
# st.error("RAG system not properly initialized. Please check the errors above.")
# else:
# with st.spinner("Searching regulations and generating answer..."):
# try:
# # Get relevant documents
# docs = vectorstore.similarity_search(question, k=4)
# contexts = [doc.page_content for doc in docs]
# # Generate answer
# context_text = "\n\n".join(contexts)
# prompt = f"""Based on the following context from UK Building Regulations, provide a clear and detailed answer to the question.
# Include specific references to regulations where available.
# Question: {question}
# Context: {context_text}
# Answer:"""
# response = llm.invoke(prompt)
# # Display answer
# st.markdown("### Answer")
# st.write(response.content)
# # Display sources
# with st.expander("View Source Documents"):
# for i, context in enumerate(contexts, 1):
# st.markdown(f"**Source {i}:**")
# st.markdown(context)
# st.divider()
# # Add thumbs up/down for answer quality
# col1, col2 = st.columns(2)
# with col1:
# if st.button("π Helpful"):
# st.success("Thank you for your feedback!")
# with col2:
# if st.button("π Not Helpful"):
# st.info("Thank you for your feedback. Please let us know how we can improve in the sidebar.")
# except Exception as e:
# st.error(f"Error generating answer: {str(e)}")
# # Footer
# st.markdown("---")
# st.markdown("*This is a research project. Always verify information with official sources.*")
# # SQLite compatibility fix for Chromadb
# import sqlite3
# print(f"SQLite version: {sqlite3.sqlite_version}")
# # Try alternative vector store approach if SQLite version is too old
# import os
# os.environ["LANGCHAIN_CHROMA_ALLOW_DEPRECATED_BACKEND"] = "true"
# import streamlit as st
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma # Updated from langchain_community.vectorstores
# from langchain_groq import ChatGroq
# import os
# from dotenv import load_dotenv
# from cloud_storage import download_vectorstore
# # Page config
# st.set_page_config(
# page_title="UK Building Regulations Assistant",
# page_icon="ποΈ",
# layout="wide"
# )
# # Load environment variables
# load_dotenv()
# # Initialize RAG components
# @st.cache_resource
# def init_rag():
# """Initialize RAG components with caching"""
# try:
# # Check if main_chroma_data exists
# if not os.path.exists("./main_chroma_data"):
# download_vectorstore()
# # st.error("Error: main_chroma_data directory not found. Please check the directory path.")
# # return None, None
# # Initialize embeddings
# try:
# embeddings = HuggingFaceEmbeddings(
# model_name="sentence-transformers/all-mpnet-base-v2",
# encode_kwargs={'normalize_embeddings': True} # Added for stability
# )
# except Exception as e:
# st.error(f"Error initializing embeddings: {str(e)}")
# return None, None
# # Initialize vector store
# # try:
# # vectorstore = Chroma(
# # collection_name="main_construction_rag",
# # embedding_function=embeddings,
# # persist_directory="./main_chroma_data"
# # )
# # except Exception as e:
# # st.error(f"Error initializing vector store: {str(e)}")
# # return None, None
# # Initialize vector store
# try:
# vectorstore = Chroma(
# collection_name="main_construction_rag",
# embedding_function=embeddings,
# persist_directory="./main_chroma_data"
# )
# except Exception as e:
# st.warning("Using deprecated backend due to SQLite version constraints")
# # Use alternative initialization if needed
# from langchain_community.vectorstores import Chroma as ChromaDeprecated
# vectorstore = ChromaDeprecated(
# collection_name="main_construction_rag",
# embedding_function=embeddings,
# persist_directory="./main_chroma_data"
# )
# # Check if GROQ API key is set
# groq_api_key = os.getenv("GROQ_API_KEY")
# if not groq_api_key:
# st.error("Error: GROQ_API_KEY not found in environment variables")
# return None, None
# # Initialize LLM
# try:
# llm = ChatGroq(
# api_key=groq_api_key,
# model_name="llama-3.3-70b-versatile",
# temperature=0.1
# )
# except Exception as e:
# st.error(f"Error initializing LLM: {str(e)}")
# return None, None
# return vectorstore, llm
# except Exception as e:
# st.error(f"Error initializing RAG system: {str(e)}")
# return None, None
# # Initialize
# vectorstore, llm = init_rag()
# # Sidebar for feedback
# with st.sidebar:
# st.title("π StructureGPT Feedback")
# feedback = st.text_area("Share your feedback on the answers:", height=100)
# if st.button("Submit Feedback"):
# st.success("Thank you for your feedback!")
# # Main interface
# st.title("ποΈ StructureGPT - UK Building Regulations AI Assistant")
# st.markdown("""
# This AI assistant helps answer questions about UK building regulations using:
# - Official Building Regulations documents
# - Expert YouTube content from LABC, RICS, and other authorities
# - Technical documentation and guidance
# """)
# # Add testing phase notice with warning styling
# st.warning("""
# β οΈ **TESTING PHASE** - StructureGPT is currently in beta testing, focusing only on UK Building Regulations Parts A (Structure), B (Fire Safety), and C (Site Preparation and Resistance to Contaminants and Moisture). Additional regulation parts will be added soon.
# """)
# # User input
# question = st.text_input("Enter your question about UK building regulations:")
# if st.button("Get Answer"):
# if not question:
# st.warning("Please enter a question.")
# elif vectorstore is None or llm is None:
# st.error("RAG system not properly initialized. Please check the errors above.")
# else:
# with st.spinner("Searching regulations and generating answer..."):
# try:
# # Get relevant documents
# docs = vectorstore.similarity_search(question, k=4)
# contexts = [doc.page_content for doc in docs]
# # Generate answer
# context_text = "\n\n".join(contexts)
# prompt = f"""Based on the following context from UK Building Regulations, provide a clear and detailed answer to the question.
# Include specific references to regulations where available.
# Question: {question}
# Context: {context_text}
# Answer:"""
# response = llm.invoke(prompt)
# # Display answer
# st.markdown("### Answer")
# st.write(response.content)
# # Display sources
# with st.expander("View Source Documents"):
# for i, context in enumerate(contexts, 1):
# st.markdown(f"**Source {i}:**")
# st.markdown(context)
# st.divider()
# # Add thumbs up/down for answer quality
# col1, col2 = st.columns(2)
# with col1:
# if st.button("π Helpful"):
# st.success("Thank you for your feedback!")
# with col2:
# if st.button("π Not Helpful"):
# st.info("Thank you for your feedback. Please let us know how we can improve in the sidebar.")
# except Exception as e:
# st.error(f"Error generating answer: {str(e)}")
# # Footer
# st.markdown("---")
# st.markdown("*StructureGPT is a research project in testing phase. Currently supporting Parts A (Structure), B (Fire Safety), and C (Site Preparation) of UK Building Regulations. Always verify information with official sources.*")
# SQLite compatibility fix for Chromadb
import sqlite3
print(f"SQLite version: {sqlite3.sqlite_version}")
# Try alternative vector store approach if SQLite version is too old
import os
os.environ["LANGCHAIN_CHROMA_ALLOW_DEPRECATED_BACKEND"] = "true"
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
import os
from dotenv import load_dotenv
from cloud_storage import download_vectorstore
# Page config
st.set_page_config(
page_title="StructureGPT - UK Building Regulations Assistant",
page_icon="ποΈ",
layout="wide"
)
# Load environment variables
load_dotenv()
# Initialize RAG components
@st.cache_resource
def init_rag():
"""Initialize RAG components with caching"""
try:
# Check if main_chroma_data exists
if not os.path.exists("./main_chroma_data"):
download_vectorstore()
# Initialize embeddings
try:
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
encode_kwargs={'normalize_embeddings': True} # Added for stability
)
except Exception as e:
st.error(f"Error initializing embeddings: {str(e)}")
return None, None, None
# Initialize vector store
try:
vectorstore = Chroma(
collection_name="main_construction_rag",
embedding_function=embeddings,
persist_directory="./main_chroma_data"
)
except Exception as e:
st.warning("Using deprecated backend due to SQLite version constraints")
# Use alternative initialization if needed
from langchain_community.vectorstores import Chroma as ChromaDeprecated
vectorstore = ChromaDeprecated(
collection_name="main_construction_rag",
embedding_function=embeddings,
persist_directory="./main_chroma_data"
)
# Check if GROQ API key is set
groq_api_key = os.getenv("GROQ_API_KEY")
if not groq_api_key:
st.error("Error: GROQ_API_KEY not found in environment variables")
return None, None, None
# Initialize LLMs - both models
try:
llm_70b = ChatGroq(
api_key=groq_api_key,
model_name="llama-3.3-70b-versatile",
temperature=0.1
)
llm_8b = ChatGroq(
api_key=groq_api_key,
model_name="llama3-8b-8192",
temperature=0.1
)
except Exception as e:
st.error(f"Error initializing LLMs: {str(e)}")
return None, None, None
return vectorstore, llm_70b, llm_8b
except Exception as e:
st.error(f"Error initializing RAG system: {str(e)}")
return None, None, None
# Initialize
vectorstore, llm_70b, llm_8b = init_rag()
# Sidebar for model selection and feedback
with st.sidebar:
st.title("π§ Model Settings")
# Model selection toggle
model_option = st.radio(
"Select Model:",
["Llama-3.3-70B (More accurate, slower)", "Llama3-8B (Faster, less accurate)"],
index=0, # Default to 70B model
help="Choose between more accurate (70B) or faster (8B) model"
)
# Display selected model details
if model_option == "Llama-3.3-70B (More accurate, slower)":
st.info("Using Llama-3.3-70B: Higher accuracy but slightly slower responses")
selected_llm = llm_70b
else:
st.info("Using Llama3-8B: Faster responses with good accuracy")
selected_llm = llm_8b
st.divider()
# Feedback section
st.title("π Feedback")
feedback = st.text_area("Share your feedback on the answers:", height=100)
if st.button("Submit Feedback"):
st.success("Thank you for your feedback!")
# Main interface
st.title("ποΈ StructureGPT - UK Building Regulations AI Assistant")
st.markdown("""
This AI assistant helps answer questions about UK building regulations using:
- Official Building Regulations documents
- Expert YouTube content from LABC, RICS, and other authorities
- Technical documentation and guidance
""")
# Add testing phase notice with warning styling
st.warning("""
β οΈ **TESTING PHASE** - StructureGPT is currently in beta testing, focusing only on UK Building Regulations Parts A (Structure), B (Fire Safety), and C (Site Preparation and Resistance to Contaminants and Moisture). Additional regulation parts will be added soon.
""")
# User input
question = st.text_input("Enter your question about UK building regulations:")
if st.button("Get Answer"):
if not question:
st.warning("Please enter a question.")
elif vectorstore is None or selected_llm is None:
st.error("RAG system not properly initialized. Please check the errors above.")
else:
with st.spinner(f"Searching regulations and generating answer using {model_option.split(' ')[0]}..."):
try:
# Get relevant documents
docs = vectorstore.similarity_search(question, k=4)
contexts = [doc.page_content for doc in docs]
# Generate answer
context_text = "\n\n".join(contexts)
prompt = f"""Based on the following context from UK Building Regulations, provide a clear and detailed answer to the question.
Include specific references to regulations where available.
Question: {question}
Context: {context_text}
Answer:"""
response = selected_llm.invoke(prompt)
# Display answer
st.markdown("### Answer")
st.write(response.content)
# Display model used
st.caption(f"Answer generated using {model_option.split(' ')[0]}")
# Display sources
with st.expander("View Source Documents"):
for i, context in enumerate(contexts, 1):
st.markdown(f"**Source {i}:**")
st.markdown(context)
st.divider()
# Add feedback section
st.subheader("Was this answer helpful?")
col1, col2 = st.columns(2)
with col1:
if st.button("π Helpful"):
st.success("Thank you for your feedback!")
with col2:
if st.button("π Not Helpful"):
st.info("Thank you for your feedback. Please let us know how we can improve in the sidebar.")
except Exception as e:
st.error(f"Error generating answer: {str(e)}")
# Footer
st.markdown("---")
st.markdown("*StructureGPT is a research project in testing phase. Currently supporting Parts A (Structure), B (Fire Safety), and C (Site Preparation) of UK Building Regulations. Always verify information with official sources.*") |