import numpy as np from collections import defaultdict import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib import cm import torch import cv2 import random def draw_panoptic_segmentation(model,segmentation, segments_info): # get the used color map viridis = cm.get_cmap('viridis', torch.max(segmentation)) fig, ax = plt.subplots() ax.imshow(segmentation.cpu().numpy()) instances_counter = defaultdict(int) handles = [] # for each segment, draw its legend for segment in segments_info: segment_id = segment['id'] segment_label_id = segment['label_id'] segment_label = model.config.id2label[segment_label_id] label = f"{segment_label}-{instances_counter[segment_label_id]}" instances_counter[segment_label_id] += 1 color = viridis(segment_id) handles.append(mpatches.Patch(color=color, label=label)) # ax.legend(handles=handles) fig.savefig('final_mask.png') return 'final_mask.png' def draw_bboxes(rgb_frame,boxes,labels,line_thickness=3): rgb_frame = cv2.imread(rgb_frame) # rgb_frame = cv2.cvtColor(rgb_frame,cv2.COLOR_BGR2RGB) tl = line_thickness or round(0.002 * (rgb_frame.shape[0] + rgb_frame.shape[1]) / 2) + 1 # line/font thickness rgb_frame_copy = rgb_frame.copy() color_dict = {} # color = color or [random.randint(0, 255) for _ in range(3)] for item in np.unique(np.asarray(labels)): color_dict[item] = [random.randint(28, 255) for _ in range(3)] for box,label in zip(boxes,labels): if box.type() == 'torch.IntTensor': box = box.numpy() # extract coordinates x1,y1,x2,y2 = box c1,c2 = (x1,y1),(x2,y2) # Draw rectangle cv2.rectangle(rgb_frame_copy, c1,c2, color_dict[label], thickness=tl, lineType=cv2.LINE_AA) tf = max(tl - 1, 1) # font thickness # label = label2id[int(label.numpy())] t_size = cv2.getTextSize(str(label), 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.putText(rgb_frame_copy, str(label), (c1[0], c1[1] - 2), 0, tl / 3, color_dict[label], thickness=tf, lineType=cv2.LINE_AA) return rgb_frame_copy