Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import gradio as gr | |
import moviepy.editor as mp | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
import torch | |
import assemblyai as aai | |
# Download necessary models if not already present | |
model_files = { | |
"wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth", | |
"wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth", | |
"resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth", | |
"mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth", | |
"s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" | |
} | |
# Download model files | |
for filename, url in model_files.items(): | |
file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename) | |
if not os.path.exists(file_path): | |
print(f"Downloading {filename}...") | |
r = requests.get(url) | |
with open(file_path, 'wb') as f: | |
f.write(r.content) | |
# Initialize xtts model | |
def initialize_xtts_model(): | |
# Get the path to the xtts_v2 folder | |
tts_dir = os.path.join(os.getcwd(), 'xtts_v2') | |
# Load the configuration | |
config_path = os.path.join(tts_dir, 'config.json') | |
config = XttsConfig() | |
config.load_json(config_path) | |
# Initialize the model from the configuration | |
model = Xtts.init_from_config(config) | |
# Load the model checkpoint | |
model.load_checkpoint(config, checkpoint_dir=tts_dir, eval=True) | |
# Move the model to GPU (if available) | |
if torch.cuda.is_available(): | |
model.cuda() | |
return model | |
# Translation class | |
class Translation: | |
def __init__(self, video_path, original_language, target_language): | |
self.video_path = video_path | |
self.original_language = original_language | |
self.target_language = target_language | |
self.model = initialize_xtts_model() # Initialize TTS model | |
def org_language_parameters(self, original_language): | |
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'} | |
self.lan_code = language_codes.get(original_language, '') | |
def target_language_parameters(self, target_language): | |
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'} | |
self.tran_code = language_codes.get(target_language, '') | |
def extract_audio(self): | |
video = mp.VideoFileClip(self.video_path) | |
audio = video.audio | |
audio_path = "output_audio.wav" | |
audio.write_audiofile(audio_path) | |
return audio_path | |
def transcribe_audio(self, audio_path): | |
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY") | |
config = aai.TranscriptionConfig(language_code=self.lan_code) | |
transcriber = aai.Transcriber(config=config) | |
transcript = transcriber.transcribe(audio_path) | |
return transcript.text | |
def translate_text(self, transcript_text): | |
base_url = "https://api.cognitive.microsofttranslator.com/translate" | |
headers = { | |
"Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"), | |
"Content-Type": "application/json", | |
"Ocp-Apim-Subscription-Region": "southeastasia" | |
} | |
params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code} | |
body = [{"text": transcript_text}] | |
response = requests.post(base_url, headers=headers, params=params, json=body) | |
translation = response.json()[0]["translations"][0]["text"] | |
return translation | |
def generate_audio(self, translated_text): | |
# Generate audio using the xtts model | |
config = XttsConfig() | |
config.load_json(os.path.join(os.getcwd(), 'xtts_v2', 'config.json')) | |
# Generate audio | |
synthesized_audio_path = "output_synth.wav" | |
outputs = self.model.synthesize( | |
translated_text, | |
config, | |
speaker_wav='output_audio.wav', | |
gpt_cond_len=3, | |
language=self.tran_code, | |
) | |
# Save the output to file | |
with open(synthesized_audio_path, 'wb') as f: | |
f.write(outputs) | |
return synthesized_audio_path | |
def translate_video(self): | |
audio_path = self.extract_audio() | |
self.org_language_parameters(self.original_language) | |
self.target_language_parameters(self.target_language) | |
transcript_text = self.transcribe_audio(audio_path) | |
translated_text = self.translate_text(transcript_text) | |
translated_audio_path = self.generate_audio(translated_text) | |
# Run Wav2Lip inference | |
os.system(f"python inference.py --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'") | |
return 'output_video.mp4' | |
# Gradio Interface | |
def app(video_path, original_language, target_language): | |
translator = Translation(video_path, original_language, target_language) | |
video_file = translator.translate_video() | |
return video_file | |
interface = gr.Interface( | |
fn=app, | |
inputs=[ | |
gr.Video(label="Video Path"), | |
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"), | |
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"), | |
], | |
outputs=gr.Video(label="Translated Video") | |
) | |
interface.launch() | |