Project / app.py
Salman11223's picture
Update app.py
02405e1 verified
raw
history blame
4.63 kB
import os
import requests
import gradio as gr
import moviepy.editor as mp
import torch
import assemblyai as aai
from xtts_v2 import model.pth
# Import specific model components
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
# Define paths for model and configuration files
# model_path = "/xtts_v2"
#config_path = os.path.join(model_path, "/config.json")
# checkpoint_path = model_path
# Initialize and load the XTTS model
config = XttsConfig("/xtts_v2/config.json")
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir="/xtts_v2", eval=True)
model.cuda() # Move model to GPU if available
def synthesize_text(text, speaker_wav, language):
try:
outputs = model.synthesize(
text,
config,
speaker_wav=speaker_wav,
gpt_cond_len=3,
language=language
)
return outputs
except Exception as e:
print(f"Error during synthesis: {e}")
raise
# Translation class
class Translation:
def _init_(self, video_path, original_language, target_language):
self.video_path = video_path
self.original_language = original_language
self.target_language = target_language
def org_language_parameters(self, original_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.lan_code = language_codes.get(original_language, '')
def target_language_parameters(self, target_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.tran_code = language_codes.get(target_language, '')
def extract_audio(self):
video = mp.VideoFileClip(self.video_path)
audio = video.audio
audio_path = "output_audio.wav"
audio.write_audiofile(audio_path)
return audio_path
def transcribe_audio(self, audio_path):
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
config = aai.TranscriptionConfig(language_code=self.lan_code)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe(audio_path)
return transcript.text
def translate_text(self, transcript_text):
base_url = "https://api.cognitive.microsofttranslator.com/translate"
headers = {
"Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
"Content-Type": "application/json",
"Ocp-Apim-Subscription-Region": "southeastasia"
}
params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
body = [{"text": transcript_text}]
response = requests.post(base_url, headers=headers, params=params, json=body)
translation = response.json()[0]["translations"][0]["text"]
return translation
def generate_audio(self, translated_text):
try:
synthesized_audio = synthesize_text(
translated_text,
speaker_wav='output_audio.wav',
language=self.tran_code
)
with open("output_synth.wav", "wb") as f:
f.write(synthesized_audio)
return "output_synth.wav"
except Exception as e:
print(f"Error generating audio: {e}")
raise
def translate_video(self):
audio_path = self.extract_audio()
self.org_language_parameters(self.original_language)
self.target_language_parameters(self.target_language)
transcript_text = self.transcribe_audio(audio_path)
translated_text = self.translate_text(transcript_text)
translated_audio_path = self.generate_audio(translated_text)
# Run Wav2Lip inference
os.system(f"python inference.py --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
return 'output_video.mp4'
# Gradio Interface
def app(video_path, original_language, target_language):
translator = Translation(video_path, original_language, target_language)
video_file = translator.translate_video()
return video_file
interface = gr.Interface(
fn=app,
inputs=[
gr.Video(label="Video Path"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
],
outputs=gr.Video(label="Translated Video")
)
interface.launch(share=True) # Optional: Set share=True to create a public link