Spaces:
Sleeping
Sleeping
File size: 4,458 Bytes
44a7013 430b249 44a7013 430b249 c7cb1f7 430b249 df8ff5c 430b249 c7cb1f7 45fe7e2 44a7013 430b249 7dee455 44a7013 430b249 44a7013 45fe7e2 44a7013 430b249 44a7013 430b249 44a7013 430b249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import requests
import gradio as gr
import moviepy.editor as mp
from TTS.api import TTS
import torch
import assemblyai as aai
os.environ["COQUI_TOS_AGREED"] = "1"
# Download necessary models if not already present
model_files = {
"wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth",
"wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth",
"resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth",
"mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth",
"s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
}
device = "cpu"
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
for filename, url in model_files.items():
file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename)
if not os.path.exists(file_path):
print(f"Downloading {filename}...")
r = requests.get(url)
with open(file_path, 'wb') as f:
f.write(r.content)
# Translation class
class translation:
def __init__(self, video_path, original_language, target_language):
self.video_path = video_path
self.original_language = original_language
self.target_language = target_language
def org_language_parameters(self, original_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.lan_code = language_codes.get(original_language, '')
def target_language_parameters(self, target_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.tran_code = language_codes.get(target_language, '')
def extract_audio(self):
video = mp.VideoFileClip(self.video_path)
audio = video.audio
audio_path = "output_audio.wav"
audio.write_audiofile(audio_path)
return audio_path
def transcribe_audio(self, audio_path):
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
config = aai.TranscriptionConfig(language_code=self.lan_code)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe(audio_path)
return transcript.text
def translate_text(self, transcript_text):
base_url = "https://api.cognitive.microsofttranslator.com/translate"
headers = {
"Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
"Content-Type": "application/json",
"Ocp-Apim-Subscription-Region": "southeastasia"
}
params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
body = [{"text": transcript_text}]
response = requests.post(base_url, headers=headers, params=params, json=body)
translation = response.json()[0]["translations"][0]["text"]
return translation
def generate_audio(self, translated_text):
tts.tts_to_file(text=translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=self.tran_code)
return "output_synth.wav"
def translate_video(self):
audio_path = self.extract_audio()
self.org_language_parameters(self.original_language)
self.target_language_parameters(self.target_language)
transcript_text = self.transcribe_audio(audio_path)
translated_text = self.translate_text(transcript_text)
translated_audio_path = self.generate_audio(translated_text)
# Run Wav2Lip inference
os.system(f"python inference.py --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
return 'output_video.mp4'
# Gradio Interface
def app(video_path, original_language, target_language):
translator = translation(video_path, original_language, target_language)
video_file = translator.translate_video()
return video_file
interface = gr.Interface(
fn=app,
inputs=[
gr.Video(label="Video Path"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
],
outputs=gr.Video(label="Translated Video")
)
interface.launch() |