Spaces:
Sleeping
Sleeping
sanchit-gandhi
commited on
Commit
·
efcdb1c
1
Parent(s):
ab3a30c
for parler
Browse files- app.py +16 -13
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from queue import Queue
|
| 2 |
from threading import Thread
|
| 3 |
from typing import Optional
|
|
@@ -11,12 +12,14 @@ from parler_tts import ParlerTTSForConditionalGeneration
|
|
| 11 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
| 12 |
from transformers.generation.streamers import BaseStreamer
|
| 13 |
|
| 14 |
-
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else
|
| 15 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
| 16 |
|
| 17 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
| 18 |
|
| 19 |
-
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 21 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
| 22 |
|
|
@@ -83,7 +86,7 @@ class ParlerTTSStreamer(BaseStreamer):
|
|
| 83 |
if stride is not None:
|
| 84 |
self.stride = stride
|
| 85 |
else:
|
| 86 |
-
hop_length =
|
| 87 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
| 88 |
self.token_cache = None
|
| 89 |
self.to_yield = 0
|
|
@@ -95,19 +98,18 @@ class ParlerTTSStreamer(BaseStreamer):
|
|
| 95 |
|
| 96 |
def apply_delay_pattern_mask(self, input_ids):
|
| 97 |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
| 98 |
-
_,
|
| 99 |
input_ids[:, :1],
|
|
|
|
| 100 |
pad_token_id=self.generation_config.decoder_start_token_id,
|
| 101 |
max_length=input_ids.shape[-1],
|
| 102 |
)
|
| 103 |
# apply the pattern mask to the input ids
|
| 104 |
-
input_ids = self.decoder.apply_delay_pattern_mask(input_ids,
|
| 105 |
|
| 106 |
# revert the pattern delay mask by filtering the pad token id
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
# append the frame dimension back to the audio codes
|
| 112 |
input_ids = input_ids[None, ...]
|
| 113 |
|
|
@@ -169,7 +171,7 @@ target_dtype = np.int16
|
|
| 169 |
max_range = np.iinfo(target_dtype).max
|
| 170 |
|
| 171 |
@spaces.GPU
|
| 172 |
-
def
|
| 173 |
play_steps = int(frame_rate * play_steps_in_s)
|
| 174 |
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
| 175 |
|
|
@@ -182,6 +184,7 @@ def gen_tts(text, description, play_steps_in_s=2.0):
|
|
| 182 |
streamer=streamer,
|
| 183 |
do_sample=True,
|
| 184 |
temperature=1.0,
|
|
|
|
| 185 |
)
|
| 186 |
|
| 187 |
set_seed(SEED)
|
|
@@ -267,12 +270,12 @@ with gr.Blocks(css=css) as block:
|
|
| 267 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
| 268 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 269 |
with gr.Column():
|
| 270 |
-
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
| 271 |
|
| 272 |
inputs = [input_text, description]
|
| 273 |
outputs = [audio_out]
|
| 274 |
-
gr.Examples(examples=examples, fn=
|
| 275 |
-
run_button.click(fn=
|
| 276 |
gr.HTML(
|
| 277 |
"""
|
| 278 |
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
|
|
|
|
| 1 |
+
import math
|
| 2 |
from queue import Queue
|
| 3 |
from threading import Thread
|
| 4 |
from typing import Optional
|
|
|
|
| 12 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
| 13 |
from transformers.generation.streamers import BaseStreamer
|
| 14 |
|
| 15 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 16 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
| 17 |
|
| 18 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
| 19 |
|
| 20 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 21 |
+
repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 22 |
+
).to(device)
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 24 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
| 25 |
|
|
|
|
| 86 |
if stride is not None:
|
| 87 |
self.stride = stride
|
| 88 |
else:
|
| 89 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
| 90 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
| 91 |
self.token_cache = None
|
| 92 |
self.to_yield = 0
|
|
|
|
| 98 |
|
| 99 |
def apply_delay_pattern_mask(self, input_ids):
|
| 100 |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
| 101 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
| 102 |
input_ids[:, :1],
|
| 103 |
+
bos_token_id=self.generation_config.bos_token_id,
|
| 104 |
pad_token_id=self.generation_config.decoder_start_token_id,
|
| 105 |
max_length=input_ids.shape[-1],
|
| 106 |
)
|
| 107 |
# apply the pattern mask to the input ids
|
| 108 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
| 109 |
|
| 110 |
# revert the pattern delay mask by filtering the pad token id
|
| 111 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
| 112 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
|
|
|
|
|
|
| 113 |
# append the frame dimension back to the audio codes
|
| 114 |
input_ids = input_ids[None, ...]
|
| 115 |
|
|
|
|
| 171 |
max_range = np.iinfo(target_dtype).max
|
| 172 |
|
| 173 |
@spaces.GPU
|
| 174 |
+
def generate_tts(text, description, play_steps_in_s=2.0):
|
| 175 |
play_steps = int(frame_rate * play_steps_in_s)
|
| 176 |
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
| 177 |
|
|
|
|
| 184 |
streamer=streamer,
|
| 185 |
do_sample=True,
|
| 186 |
temperature=1.0,
|
| 187 |
+
min_new_tokens=10,
|
| 188 |
)
|
| 189 |
|
| 190 |
set_seed(SEED)
|
|
|
|
| 270 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
| 271 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 272 |
with gr.Column():
|
| 273 |
+
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out", streaming=True, autoplay=True)
|
| 274 |
|
| 275 |
inputs = [input_text, description]
|
| 276 |
outputs = [audio_out]
|
| 277 |
+
gr.Examples(examples=examples, fn=generate_tts, inputs=inputs, outputs=outputs, cache_examples=False)
|
| 278 |
+
run_button.click(fn=generate_tts, inputs=inputs, outputs=outputs, queue=True)
|
| 279 |
gr.HTML(
|
| 280 |
"""
|
| 281 |
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
git+https://github.com/huggingface/parler-tts.git
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/parler-tts.git
|
| 2 |
+
accelerate
|